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Abstract—In this paper we propose to approach the subject
of Twitter Topic Detection using a new technique called Topic
Fuzzy Fingerprints. A comparison is made with two popular
text classification techniques, Support Vector Machines (SVM)
and k-Nearest Neighbours (kNN). Preliminary results show that
Twitter Topic Fuzzy Fingerprints outperforms the other two
techniques achieving better Precision and Recall, while still being
much faster, which is an essential feature when processing large
volumes of streaming data.

I. INTRODUCTION

No one can deny the importance of public social networks in
current modern world society. From event advertising or idea
dissemination, to commenting and analysis, social networks
have become the de facto means for individual opinion making
and, consequently, one of the main shapers of an individuals
perception of society and the world that surrounds him. The
Arab Spring [1], the Indignant movement protest [2], or
presidents tweeting and posting messages on Facebook instead
of using official public addressing are just a few examples
of how influential social networks have become. Nowadays
important events are often commented in social networks even
before they become “public news”, and even news agencies
and networks had to adapt and start using social networks as
sources of information.

Among public social networks, Twitter has become a major
tool for sociological analysis. However, in order to properly
analyze twitter data, it is necessary to filter which tweets are
relevant for a given subject or topic. This is not a trivial
problem since there are currently more than 340 millions of
daily tweets covering thousands of different topics [3]. Twitter
already helps by providing a list of top trends [4] and the
hashtag # mechanism: when referring to a certain topic, users
are encouraged to indicate it through the use of a hashtag,
e.g., “#Obamacare has been approved!” indicates the topic of
the tweet is Obamacare. Websites such as #hastags.org make
good use of these information to present twitter trends, e.g.,
http://www.hashtags.org/analytics/Obamacare/.

Other tools such as Twittermonitor [5] can also be used to
obtain twitter trends. However not all tweets related to a given
topic are hashtagged. In fact, only roughly 16% of all tweets
are hashtagged [6]. These numbers have been confirmed by our
(assumedly) small experiments. Therefore, in order to properly
analyze a given topic, it is essential to include the most of the
remaining 84% of the untagged information.

This task, which we shall refer to as Tweet Topic De-
tection, involves deciding if a given tweet is related to a
given #hashtagged topic. Basically this can be categorized
as a classification problem, albeit one with some particular
characteristics that need to be addressed specifically: it is a text
classification problem, with an unknown and large number of
categories, where the texts to be classified are very short texts
(up to 140 characters), and it is a problem that fits the Big
Data paradigm due to the huge amounts of streaming data.

We distinguish between Topic Classification and Topic
Detection. The former defines a short and generic set of
categories, ranging from politics to sports and the documents
will often belong to at least one of those categories. It is very
rare that a tweet does not fit into any topic. The latter takes
on a more detailed approach, where an attempt is made to
determine the topic of the document, given a predetermined
large set of possible topics. In addition, the topics are so unique
amongst themselves that there is a high probability that a tweet
without a hashtag may very well not belong to any of the
current trends.

When considering this difference, the most similar works on
Topic Detection within Twitter are those related with emerging
topics or trends, for example [5], [8]–[10]. In these works
the authors use a wide variety of techniques regarding text
analysis to find the most common related words and hence
detect topics. In our work we already assume the existence of
trending topics and we aim at efficient detecting tweets that
are related to them, despite not being explicitly marked as so.

It is also possible to find several works regarding Topic
Classification. In [11], an attempt is made to classify Twitter
Trending Topics into 18 broad categories, such as: sports,
politics, technology, etc, and their experiments on a database
of randomly selected 768 trending topics (over 18 classes)
show that, using text-based and network-based classification
modeling, a classification accuracy up to 65% and 70% can
be achieved, respectively. Another interesting article, despite
not on the theme of Topic Detection, demonstrates how to
use Twitter to automatically obtain breaking news from the
tweets posted by Twitter users [12]. In 2009, when Michael
Jackson passed away, “the first tweet was posted 20 minutes
after the 911 call, which was almost an hour before the
conventional news media first reported on his condition”. This
further enforces the importance of automatically analyzing the
massive amount of information on Twitter.

In what concerns text classification, K-Nearest Neighbors
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(kNN) and the Support Vector Machine (SVM) are amongst
the most widely used and best performing classifiers. In [7],
Yang and Liu, performed several tests in a controlled study and
reported that SVM and kNN are at least comparable to other
well-known classification methods, including Neural Networks
and Naive Bayes, and that significantly outperform the other
methods when the number of positive training instances per
category are small.

In this paper we propose a new approach to the subject
of Twitter Topic Detection: the use of and adaptation of the
Fuzzy Fingerprints introduced in [13], associated with the
use of Filtered Space Saving algorithm [14] [15] and the
fuzzy based automatic error correction mechanism presented
in [16]. This work is integrated within the MISNIS frame-
work, being developed with the goal of Intelligent Mining
of Public Social Networks’ Influence in Society [13]. In the
paper we present some preliminary results that show that
the adapted Fuzzy Fingerprints outperform some of the most
commonly classifiers (SVM and kNN) when applied to this
particular problem. Additionally, in conjunction with the other
techniques, the proposed twitter topic detection process has
additional advantages over the existing methods. In particular,
it is significantly faster, and the resulting models are much
smaller than SVM’s.

The paper is organized as follows: First, we discuss several
“Related Techniques” from similar fields of study such as
Text Categorization and Document Representation. Secondly,
we explain how our proposed method (Twitter Topic Fuzzy
Fingerprints) works and how it stems from the Author Fuzzy
Fingerprint in [13]. Then, we present the characteristics of the
used data set and how evaluations were performed. Finally
we evaluate the Twitter Topic Fuzzy Fingerprints method and
present the comparison results to SVM and kNN.

II. RELATED TECHNIQUES

The goal of this work is essentially to automatically classify
tweets into a set of trending topics. This process is broadly
known in Natural Language Processing (NLP) as Text Cate-
gorization, and consists of finding the correct topic (or topics)
for each document, given a set of categories (subjects, topics)
and a collection of text documents [17].

The text contained in each each tweet is the most rele-
vant source of information for classification. However, text
is an unstructured form of data that classifiers and learning
algorithms cannot directly process [17]. For that reason, our
documents/tweets must be converted into a more manageable
form, during a preprocessing step.

A. Document Representation

One of the simplest and commonly used representation is
the bag-of-words model. Frequently used in NLP and Infor-
mation Retrieval (IR), it consists of representing a document
as a set (bag) of its words, ignoring the syntax and even the
word order, but keeping the frequency of each word. It uses all
words in a document as features. Thus, the dimension of the
feature space is equal to the number of different words in all

Am,n =

1 1 1 1 0 0 0 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 0 0


Fig. 1. Binary Bag-of-Words Representation

documents [17]. This form of representation can be illustrated
with the following example:

• John bought a car
• I love driving my car
• I love John

Based of these three texts, a dictionary of unique words can
be constructed: {John, bought, a, car, I, love, driving, my}.

As shown in Figure 1, the text collection can then be
represented as a binary matrix, containing 8 columns, one per
dictionary word, and 3 rows, one per text entry.

The matrix presented in Figure 1 indicates whether a
given term exists in the document, without detailing on its
importance to the collection of documents. An extended rep-
resentation is known as the TF-IDF scheme and combines
the concept of the term frequency with the inverse document
frequency. The TF-IDF scheme is a scoring method that can
tell the importance of a word in a collection of documents,
and can be calculated as a simple multiplication:

tfidf = tf × idf (1)

The concept of term frequency (tf ) can be simply the
number of occurrences of the word in the document. The
more common the word, the higher the term frequency will
be. On the other hand, words that occur in few documents,
are probably richer in details that could better characterize the
document. The inverse document frequency (idf ) spans from
the principle that a word that occurs in many documents is
not relevant in differing each document from each other. idf
can be obtained by dividing the total number of documents N
by the number of documents ni containing the term, and then
taking the logarithm of that quotient, as expressed in Eq. (2).

idf = log
N

ni
(2)

By combining the Eqs. (1) and (2), the TF-IDF of word in
a document can be expressed by Eq. (3).

tfidfi = tf × log
N

ni
(3)

As succinctly explained in [18], tfidf assigns a weight to
a term in document that is:

1) highest when the term occurs many times within a small
number of documents;

2) lower when the term occurs fewer times in a document,
or occurs in many documents;

3) lowest when the term occurs in virtually all documents;
Different categorization methods can be applied to a struc-

tured document representation. In general, categorization al-
gorithms follow the following four steps [17]:
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1) Decide the categories that will be used to classify the
instances;

2) Provide a training set for each of the categories;
3) Decide on the features that represent each of the in-

stances;
4) Choose the algorithm to be used for the categorization;

B. k-Nearest Neighbors Algorithm - kNN

The kNN is an example-based classifier. This means it will
not “build explicit declarative representations of categories, but
instead rely on computing the similarity between the document
to be classified and the training documents” [17]. In this case,
the training data is simply the “storing of the representations
of the training documents together with their category labels”.

In order for kNN to “decide whether a document d belongs
to a category c, kNN checks whether the k training documents
most similar to d belong to c. If the answer is positive for a
sufficiently large proportion of them, a positive decision is
made.”

An appropriate value of k is of the utmost importance.
While k = 1 can be too simplistic, as the decision is made
according only to the nearest neighbor, a high value of k can
have too much noise in it and favor dominant categories. In
fact, this algorithm is known to be affected by noisy data.

The kNN is considered to be one of the simplest and
best performing text classifiers, whose main drawback is “the
relatively high computational cost of classification - that is,
for each test document, its similarity to all of the training
documents must be computed” [17]. In kNN, “the training is
fast, but classification is slow. Computing all the similarities
between a document that has not been categorized and a
collection of documents, is slow” [19].

C. Support Vector Machines - SVM

A support vector machine (SVM) is a very fast and effective
binary classifier. According to [19] “every category has a
separate classifier and documents are individually matched
against each category”. Given the vector space model in which
this method operates, geometrically speaking, [17] describes
SVM as a “hyperplane in the feature space, separating the
points that represent the positive instances of the category from
the points that represent the negative instances. The classifying
hyperplane is chosen during training as the unique hyperplane
that separates the known positive instances from the known
negative instances with the maximal margin”.

Consider Figure 2 as a two dimensional example of SVM.
As one would expect, in this scenario, the hyperplanes are
lines. The figure reveals that the hyperplane H1 does not
separate the positive from the negative instances. H2 does,
but it does not guarantee the maximum distance between them.
Finally, H3 offers the necessary solution. “It is interesting to
note that SVM hyperplanes are fully determined by a relatively
small subset of the training instances, which are called the
support vectors” [17].

According to [19], SVM has at least three major differences
with the previous categorization method:

Fig. 2. Two dimensional Support Vector Machine

1) Not all training documents are used. The SVM function
is built only by documents near to the classification
border;

2) An SVM can construct an irregular border to separate
positive and negative training documents;

3) Not all features (unique words) from training documents
are necessary for classification;

SVM methods for text categorization have recently attracted
some attention since they are amongst the most accurate
classifiers [19].

III. TWITTER TOPIC FUZZY FINGERPRINTS

In this work we propose the use of an adaptation of the
Fuzzy Fingerprints classification method described in [13] to
tackle the problem of Topic detection in Twitter. In [13] the
authors approach the problem of text authorship by using the
crime scene fingerprint analogy to claim that a given text has
its authors writing style embedded in it. If the fingerprint is
known, then it is possible to identify whether a text whose
author is unknown, has a known author’s fingerprint on it.

The algorithm itself works as following:
1) Gather the top-k word frequencies in all known texts of

each known author;
2) Build the fingerprint by applying a fuzzifying function

to the top-k list. The fuzzified fingerprint is based on
the word order and not on the frequency value;

3) Perform the same calculations for the text being identi-
fied and then compare the obtained text fuzzy fingerprint
with all available author fuzzy fingerprints. The most
similar fingerprint is chosen and the text is assigned to
the fingerprint author;

The proposed fuzzy fingerprint method for Tweet Topic
Detection, while similar in intention and form, differs in a
few crucial steps.
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c r e a t e D a t a S t r u c t u r e ( t r a i n i n g S e t , t o p T r e n d s )
t r e n d F P = h a s h t a b l e ( t o p i c F i n g e r p r i n t ( ) )
f o r t w e e t i n t r a i n i n g S e t

t o k e n s = t o k e n i z e ( t w e e t )
kw = words i n t o k e n s and t o p T r e n d s
f o r k i n kw

f o r t i n t o k e n s
i f t n o t i n t o p T r e n d s

t r e n d F P {k } [ t ]++

Fig. 3. Pseudo-Code to explain data structure used

First it is important to establish the parallel between the
context of author ownership and Tweet Topic Detection.
Instead of author fingerprints, in this work we are looking
to obtain the fingerprints of hashtagged Twitter topics (#).
Once we have all the topics’ fingerprints, each unclassified
(un-hashtagged) tweet can be processed and compared to the
fingerprints existing in the topic library.

Secondly, different criteria were used in selecting the top-
k words for the fingerprint. While [13] uses word frequency
as the main feature to create the top-k list, here we use
an adaptation of an Inverse Document Frequency technique,
aiming reducing the importance of frequent terms that are
common across several topics, such as “follow”, “RT” and
“like”.

Lastly, the similarity score differs from the original, based
on the fact that tweets are, by design, very short texts, while
the original Fuzzy Fingerprint method was devised to classify
much longer texts (newspaper articles, books, etc. ranging
from thousands to millions of characters). Here we propose
the use of a normalized score with values between 0 and 1,
where the lowest score indicates that the tweet in question is
in no way similar to the topic fingerprint, and the highest value
indicates that the tweet is totally similar.

A. Building the Fingerprint Library

In order to build the fingerprint library, the proposed method
goes over the training set, which, in this situation, are tweets
containing the Trending Topics of the day. For each tweet, it
acknowledges the existence of the # and adds each word in
the tweet to a #topic table alongside with its counter of occur-
rences. Only the top-k most frequent words are considered.
The algorithm presented in Figure 3 presents further details
the this process.

The main difference between the original method and ours,
is that due to the small size of each tweet, its words should be
as unique as possible in order to make the fingerprints distin-
guishable amongst the various topics. Therefore, in addition
to counting each word occurrence, we also account for of its
Inverse Topic Frequency (ITF), an adaptation of the Inverse
Document Frequency in Eq. (2), where N becomes the topic
fingerprint library size (i.e., the total number of topics), and
ni becomes the number of #topics where the word is present.

Table I shows an example of a possible top-k output
produced by the algorithm Figure 3 for a fingerprint size
k = 3, after going through a small training set. By multiplying
the occurrences of each word per topic with its ITF, we
obtain the third column of table I. As expected, the term
“help”, which was the only one that occurred in more than
one fingerprint, got dropped to last position in the ranking of
fingerprint words for the topic “#derek”.

TABLE I
FINGERPRINT HASH TABLE BEFORE AND AFTER ITF

Key Feature Counter Feature ITF
dead 4 dead 1.90

#michaeljackson rip 2 rip 0.95
sing 1 sing 0.48

earthquake 10 earthquake 4.77
#haiti rip 5 rip 1.43

help 1 help 0.17
show 8 show 3.81

#derek help 3 australia 0.95
australia 2 help 0.52

After obtaining the top-k list for a given #topic, we take the
same approach as the original method, and use the membership
Eq. 4 to build the fingerprint, where k is the size of the top-k
fingerprint and i represents the membership index.

µab(i) =

{
1− (1− b) i

kb i < a
a(1− i−a

k−a )

k i ≥ a
(4)

The fingerprint is a k sized bi-dimensional array containing
in the first column the list of the top-k words, and in the
second column its membership value µab(i) obtained by the
application of Eq. (4).

B. Tweet-Topic Similarity Score

In the original method, Eq. (4), in order to check the
authorship of a given document, a fingerprint would be built
for the document (using the procedure described above), and
then the document fingerprint would be compared with each
fingerprint present in the library. Within the Twitter context,
such approach would not work due to the very small number of
words contained in one tweet - it simply does not make sense
to count the number of individual word occurrences. Therefore
we developed a Tweet-Topic Similarity Score (T2S2) that tests
how much a tweet fits to a given topic. The T2S2 function,
Eq. (5), provides a normalized value ranging between 0 and
1, that takes into account the size of the (preprocessed) tweet
(i.e., its number of features).

T2S2(Φ, T ) =

∑
v
µΦ(v) : v ∈ (Φ ∩ T )

j∑
i=0

µΦ(wi)

(5)

In Eq. (5) Φ is the #topic fingerprint, T is the set of words
of the (preprocessed) tweet, µΦ(v) is the membership degree
of word v in the topic fingerprint, and j is the is the number
of features of the tweet. Essentially, T2S2 divides the sum of
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the membership values µΦ(v) of every word v that is common
between the tweet and the #topic fingerprint, by the sum of
the top j membership values in µΦ(wi) where w ∈ (Φ). Eq. 5
will tend to 1.0 when most to all features of the tweet belong
to the top words of the fingerprint, and tend to 0.0 when none
or very few features of the tweet belong to the bottom words
of the fingerprint.

IV. DATA SET

Using Twitter’s developer tools [20], we extracted samples
of the public data flowing through Twitter by establishing a
connection to a Twitter streaming endpoint. It is important to
note that, using the sample API, only 1% of the actual public
tweets can be retrieved [21]. Nonetheless, with this method,
we obtained nearly two million tweets for May, 18th 2013.

By using Twitters DEV “GET Trends-Weekly” method, one
can obtain the top trending topics for each day in a given week.
The method belongs to the REST API, version 1.0. It should
be noted that in August of 2013, the previous method was
deprecated and replaced in version 1.1 by “GET Trends/place”
where one can get the 10 top trending topics at the current
time, filtered by geographical location.

From the above set of tweets, and by using the mentioned
methods, we obtained our Training Data Set, which consists
of approximately 11000 tweets containing the hashtag for the
top trending English, Spanish and Portuguese topics of the day
(Table II).

By analyzing the distribution of top trend hashtags across
these tweets, one can see that the distribution of tweets per
topic is uneven. While nearly 18% of those tweets contain the
trend #nowplaying (1935), #mtvonedirection only appears in
93 tweets and #5hfridayquestions even shows up only once.
This makes for what is known as an unbalanced dataset, where
the categories do not have the same number of sample docu-
ments. Additionally, one single category can even dominate
the training set in such fashion, that some classifiers may
incorrectly categorize most of the test set as that being a part
of that one category.

The Test Data Set consists of 350 tweets that do not contain
any of the top trending hashtags in Table II, although they may
contain others. As shown in Table III, all 350 tweets were
impartially annotated as belonging to one of topics above, in
spite of not having the # it is claimed to belong too.

V. EVALUATION METRICS

In this section, we take a look at the metrics used to
determine how good or poorly a classifier performs. Typically
there are three key concepts: Precision, Recall and F-Measure.

Before the formulas are presented, it is important to grasp
the statistical definitions that constitute those formulas, within
the scope of Twitter topic detection:

1) True Positive (TP): This means that a tweet belonging to
a given topic, has been correctly identified as belonging
to that topic;

TABLE II
LIST OF TOP TRENDS - 18TH OF MAY 2013

Top Trend #tweets
#5hfridayquestions 1
#alexvsalex 88
#askjennette 135
#assistacaradesantarestart 10
#b1a41stwin 294
#bardiemosa 906
#codigomovistar 2
#codigomovistar2 18
#cuidadocomoanjo35 2
#finalcopatve 25
#gobiernodecallerevolucionpopular 308
#gtmo17 15
#hurtnovel 172
#ilovegodbecause 898
#jedwardtvpov 102
#mtvonedirection 93
#muriovidela 54
#mydemitop3songs 437
#nomeolvidode 179
#notersoftheday 349
#nowplaying 1935
#nuncafaltaesapersonaque 825
#obrigadogioantonelliealexandrenero 192
#replacesonglyricswithnutsack 517
#simndice 79
#thevampstwitcam 1
#tropaunidaconmaduro 1128
#twitpicyourreactionifyouwonthelottery 193
#ultimovoo 292
#vazajorge 422
#vierneseneuropa 2
#wecantstop 591
#welcometoitalyguys 293
#whataboutlove 362

TABLE III
LIST OF ANNOTATED TRENDS

Annotated Trend #tweets
#alexvsalex 5
#b1a41stwin 67
#codigomovistar2 1
#finalcopatve 21
#gobiernodecallerevolucionpopular 5
#gtmo17 1
#hurtnovel 1
#ilovegodbecause 9
#jedwardtvpov 9
#mtvonedirection 14
#mydemitop3songs 8
#notersoftheday 3
#nowplaying 65
#nuncafaltaesapersonaque 1
#obrigadogioantonelliealexandrenero 4
#replacesonglyricswithnutsack 5
#simndice 8
#tropaunidaconmaduro 12
#ultimovoo 24
#vazajorge 18
#wecantstop 48
#whataboutlove 21
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2) False Positive (FP): This means that a tweet that does not
belong to a given topic, has been incorrectly identified
as belonging to that topic;

3) True Negative (TN): This means that a tweet that does
not belong to a given topic, has been correctly identified
as not belonging to that topic;

4) False Negative (FN): This means that a tweet belonging
to a given topic, has been incorrectly identified as not
belonging to that topic.

With this in mind, the definition of the metrics are:

Precision =
#TP

#TP + #FP
(6)

Recall =
#TP

#TP + #FN
(7)

F −Measure = 2× Precision×Recall
Precision+Recall

(8)

VI. RESULTS

Here we compare the Twitter Topic Fuzzy Fingerprint
method up against the two algorithms we presented earlier: k-
Nearest Neighbor (kNN) and Support Vector Machine (SVM).
The exact same training data sets and test data sets were used
for all methods. Several test scenarios were built to find each
algorithm optimal performance setting.

A. Twitter Topic Fuzzy Fingerprint Performance

The following parameters were considered for the Twitter
Topic Fuzzy Fingerprint:

1) k, size of the fuzzy fingerprint. Several increasing values
were taken into to account, in order to determine whether
a bigger or smaller k value would provide better results;

2) stopwords. For each scenario, the results provided were
measured with and without the removal of stopwords.
This aims to ascertain the true impact of the removal of
stopwords;

3) stemming. For each scenario, the option to return words
in their stem form can be either turned on or off. With
this parameter, we aim to determine the impact of this
preprocessing technique towards getting better results.

4) minimum j sized words. For each scenario, different
values of j were considered as being the minimum size
of the words to feature in the tweets’ list of terms. The
purpose of this variable, is to test how the removal of
small words may help keep richer tokens and get better
results;

5) threshold value. It represents the T2S2 value from which
our method will declare that a certain tweet belongs to
a given trend. For the purpose of this thesis, values of
0.5, 0.25, 0.15 and 0.10 were tested.

Through extensive testing, we found that the best results for
the Twitter Topic Fuzzy Fingerprints Algorithm were achieved
when:

• considering a low threshold value for acceptance of a
twitter belonging to a topic (T2S2 = 0.15)

TABLE IV
TWITTER TOPIC FUZZY FINGERPRINT PERFORMANCE

j k Precision Recall F-Measure
3 5 0.798 0.690 0.740
3 10 0.776 0.708 0.740
3 15 0.804 0.889 0.844
3 20 0.784 0.916 0.844
3 25 0.762 0.925 0.835
3 30 0.760 0.925 0.834
3 50 0.751 0.925 0.829
3 75 0.738 0.925 0.821
3 100 0.728 0.937 0.819
3 150 0.683 0.973 0.802
3 250 0.606 0.982 0.749
3 500 0.518 0.997 0.682

• configuring a low value of k for the size of the list of the
fingerprint (k = 15)

• removing short words from the corpus, only keeping
words with a minimum length of 3 characters

• removing stopwords from the corpus
• not performing Stemming operations
Table IV resumes the algorithm’s performance. Results

reveal that the best value is f-measure=0.844. This represents
a weighted average of precision=0.804 and recall=0.889. In
other words, a precision of 80.4% means that of all the times
our method said a topic was being correctly identified, only
19.6% were actually incorrect. In addition, a recall of 88.9%
indicates that only 11.1% positive cases were left unidentified.

B. kNN Performance

In order to test kNN, stopwords were removed but stemming
was not performed. The final representation of either training
and test set is a bag-of-words type, Figure 1, with TF-IDF
weighting, Eq. (3). The tests were performed using the WEKA
framework [22].

Table V contains kNN results for different values of k and
j, where j is the minimum sized word, and k is the number
of neighbors that the algorithm will use to make its decision.

TABLE V
kNN’S PERFORMANCE

j k Precision Recall F-Measure
1 3 0.550 0.345 0.424
1 5 0.562 0.368 0.445
1 10 0.373 0.282 0.321
2 3 0.570 0.174 0.267
2 5 0.578 0.148 0.236
2 10 0.499 0.142 0.221
3 3 0.685 0.137 0.228
3 5 0.744 0.168 0.274
3 10 0.379 0.123 0.186
4 3 0.743 0.179 0.288
4 5 0.660 0.259 0.372
4 10 0.378 0.219 0.277

The results are quite poor, with the best f-measure value
peaking at an unimpressive 0.445, when 5 neighbors are
consulted and no words are removed from the corpus, i.e.,
all words have a minimum size of 1 character.
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A possible explanation for this poor performance is the
unbalanced nature of the training data set, as explained by
Zang and Inderjeet in [23]. When dealing with unbalanced
data sets, kNN completely ignores the minority classes and
will often mistakenly classify a tweet to the majority category.

C. SVM’s Performance

Once again, stopwords were removed but stemming was not
performed. The final representation of either training and test
set is a bag-of-words type, Figure 1, with TF-IDF weighting,
Eq. (3). We also used the SVM WEKA implementation. A
number of different parameters were tested and optimized, and
the best performance was achieved using a linear kernel and
a small soft-margin value: C = 0.01.

Table VI contains the values obtained by using SVM’s.
j represents the minimum size of the words kept in each
scenario:

TABLE VI
SVM’S PERFORMANCE

j Precision Recall F-Measure
1 0.776 0.792 0.784
2 0.803 0.789 0.796
3 0.804 0.698 0.747
4 0.761 0.632 0.691

Overall, the performance is far better than kNN’s, but still
worse than Twitter Topic Fuzzy Fingerprints. When j = 2 it
scores a f-measure=0.796.

D. Results Comparison

When comparing all 3 methods, (Table VII), it is evident
that the Twitter Topic Fuzzy Fingerprint algorithm outperforms
both kNN and SVM. The proposed method achieves the best
values for precision, recall and f-measure value. The SVM
strategy, while achieving a similar precision achieves almost
9% lower recall. Results achieved by the kNN are quite lower
than the other two methods.

The reason why SVM performs outperforms kNN is be-
cause it can be better fine tuned than the latter. As mentioned
above, this performance is the result of a linear kernel function
input. Additional testing showed that non-linear kernels dis-
played the same kind of results as kNN, exactly for the same
reason of being unable to handle an unbalanced data set.

TABLE VII
OVERALL COMPARISON I

Method Precision Recall F-Measure
Fuzzy Fp 0.804 0.889 0.844
kNN 0.562 0.368 0.445
SVM 0.803 0.789 0.796

The difference in performance is further accentuated if
considering the same value of j = 3, which is both the
minimum size of the words kept as features and the only
common parameter between all 3 methods.

In terms of time taken to build the model and to perform
classification, one can not directly compare fuzzy fingerprints

TABLE VIII
OVERALL COMPARISON II - j = 3

Method Precision Recall F-Measure
Fuzzy Fp 0.804 0.889 0.844
kNN 0.744 0.168 0.274
SVM 0.804 0.698 0.747

with the other two methods because different tool-kits are
being used.

In our algorithm, the preprocessing stage, implemented in
Python, is a part of reading the tweets and creating the
model as the execution progresses. In kNN and SVM, the
preprocessing stage consist not only of removing stopwords,
but also calculating the TF-IDF and creating an output that
is fit for WEKA, often known as the Attribute-Relation File
Format (ARFF). For the these two methods, the model itself
is only built within the WEKA execution.

Nevertheless, in our current conditions, the training time
performance is several times better for fuzzy fingerprints.
The classification is also straightforward. Table IX shows
the processing time comparison. The proposed method pre-
processes the training data, builds its model/fingerprint and
classifies the test set almost several times faster than kNN and
SVM. It is specially faster when evaluating the test set, which
further reinforces the idea that the Twitter Fuzzy Fingerprints
can be used as an on-the-fly method over a Twitter stream.

TABLE IX
EXECUTION SPEED COMPARISON (IN SECONDS)

Method Preprocessing Build Model Evaluate Test Set Total
Fuzzy Fp 31.16 0.18 31.34
kNN 127.74 0.05 13.66 141.45
SVM 127.74 181.61 1.90 311.25

kNN is a lazy algorithm, where all computation is deferred
until classification, which means that the reported time relates
to preprocessing and loading time. In what concerns to SVM,
a significant part of the time is attributed to creating the model.
In our approach, building the model is just a linear function
of the number of words being considered for training.

Finally, the size of model is also a significant issue, specially
when one aims at processing big quantities of data, in a
distributed fashion. The fuzzy fingerprint model for a given
topic corresponds to a vector of k fixed elements, each one
containing the value of a feature (e.g. the word) and its score.
Therefore it is fixed in size and corresponds to pruning the
list of relevant words at k.

VII. CONCLUSIONS AND FUTURE WORK

We proposed a method for topic detection for microbloging
content, such as Twitter, that outperforms two other commonly
used methods, kNN and SVM. The proposed method also
presents several advantages that make it an undeniable alter-
native for on-the-fly, and possibly distributed, topic detection:
1) the training time can be comparable to kNN, which is
a lazy algorithm, but is several times faster than SVM; 2)
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the size of the resulting model is also significantly smaller
than SVM models, and that is an important issue to take
into consideration when performing distributed computation
in different machines; 3) the classification is also significantly
faster than the other two methods, making it an interesting
solution for on-the-fly processing of Big Data streams.

It should be noted that the data used here is still a rather
small set when compared with the daily amount of Twitter
data. In the future, extended manually annotated test sets
must be created in order to further validate the results here
presented.
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