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Abstract   

Short-term stream flow forecasts are required for simula-
tion, optimization, and decision-making purposes in ap-
plications ranging from hydropower planning to flood 
prevention. The particular case of one-day ahead stream 
flow forecasting is an important but difficult problem that 
has been increasingly studied using hybrid computational 
intelligence and machine learning techniques. However, 
these studies present several limitations. In this work we 
attempt to address those limitations by (1) replicating and 
validating previous works; (2) using more objective eval-
uation criteria; (3) applying several computational intelli-
gence techniques to datasets representative of diverse ge-
ographic areas; (4) preprocessing data and performing an 
extensive parameter optimization in order to improve pre-
vious results. 

Keywords: Stream flow forecasting; One step-ahead 
forecasting; ANFIS; Artificial Neural Networks; Support 
Vector Machines. 

1. Introduction and related work  

Fresh water is both essential for human life support and a 
crucial resource for multiple industries.  The planning and 
operation activities concerning fresh water resources, es-
pecially of fresh water streams, are becoming increasingly 
important due to human population growth and environ-
mental awareness. As such, short-term stream flow fore-
casts are required for simulation, optimization, and deci-
sion-making purposes. The particular case of one-day 
ahead stream flow forecasting consists on the prediction 
of the next day flow of a river given current and past 
stream flow observations on a single location. It is a diffi-
cult problem for several reasons: 

• Stream flows are highly non-linear and dependent on 
geographic location, climate and topography of the re-
gion of the watershed, reservoir or hydrologic basin; 

• Stream flows are often of non-stationary nature due to 
wet and dry periods over the year; 
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• Streams often have sudden floods that result in very 
steep flow slopes. These flow peaks often last a single 
day and can be several orders of magnitude larger than 
the regular flow, making them a huge forecasting 
challenge. 

Both hybrid computational intelligence and machine 
learning techniques have proved to be rather successful 
when approaching one-step ahead forecasting of non-
linear time-series (e.g. [8][9][16]0). It is therefore natural 
that such black-box techniques have been previously im-
plemented with the purpose of stream flow forecasting. 
The existing literature uses techniques such as Artificial 
Neural Networks (ANN), Adaptive Neuro Fuzzy Infer-
ence Systems (ANFIS), and also Support Vector Ma-
chines (SVM) [7][22][24][12]. Other approaches, such as 
[14] use predictive fuzzy clustering but only for average 
monthly flow predictions, which present a smoothed be-
havior and therefore address a different problem. Despite 
the many studies, most, if not all, have several limitations: 

1. They only address a particular stream/river, therefore 
not taking into account the diversity of climates, to-
pographies, basins, etc. Therefore, their conclusions 
cannot be extrapolated/generalized to other stream 
flows – even if they often do it. 

2. They do not present an objective measure of the quali-
ty of the forecast. They might compare several tech-
niques, but no ground truth (or baseline) is usually 
presented. Therefore, even if one technique is better 
than the others, it can still be inadequate for one-day 
ahead stream flow forecast. 

3. High errors when dealing with sudden flow changes: 
none of the presented studies can forecast sudden 
floods. 

Overall, the presented results are often misleading: the 
resulting forecasting graphs might seem impressive, but 
this is usually only due to the used representation scale, 
since most forecasts exhibit a constant displacement be-
tween the forecast and the observed flow value. If the 
graphs are zoomed in, it is possible to observe at least one 
day delay between the observed flow and the forecast, es-
pecially when there is a sudden flow change (see section 
2). 

In this work we attempt to address the above men-
tioned limitations by (1) replicating and validating the 
previous works; (2) creating baselines for each dataset in 
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order to have a more objective evaluation criteria; (3) ap-
plying the several techniques on several datasets repre-
sentative of diverse geographic areas; (4) preprocessing 
the datasets and performing an extensive parameter opti-
mization for all black box techniques in order to improve 
previous results. 

The paper is organized as follows: Section 1 describes 
the addressed problem; In section 2 we described the im-
plemented techniques; In section 3 we defend the need for 
a ground truth and propose the use of a simple baseline 
for result evaluation; In section 4 we describe the used 
datasets; Section 5 focus on data preprocessing; Section 6 
describes the implemented models and their optimization; 
Section 7 shows and discusses the obtained results; and 
finally, section 7 presents the conclusions.  

2. Methods  

We used three different computational intelligence fore-
casting techniques to address this problem: Artificial Neu-
ral Neworks (ANN), Adaptive Neuro Fuzzy Inference 
Systems (ANFIS), and Support Vector Machines (SVM). 

Artificial neural networks (ANNs) are a family of sta-
tistical learning algorithms originally inspired by biologi-
cal neural networks that can be used to estimate or ap-
proximate non-linear functions with an arbitrary number 
of inputs. Artificial neural networks are generally pre-
sented as systems of interconnected "neurons" which can 
compute values from inputs, and are capable of learning 
and of pattern recognition. The ANN model used in this 
study was implemented using Matlab Neural Network 
toolbox (version 7.0.1) [15] and all the simulations were 
performed under this environment. 

ANFIS is a kind of artificial neural network based on 
a Takagi–Sugeno fuzzy inference system introduced by 
Jang [11]. Since it integrates both neural networks and 
fuzzy logic principles, it has the potential to capture the 
benefits of both in a single framework. Its inference sys-
tem corresponds to a set of fuzzy IF–THEN rules that 
have learning capability to approximate nonlinear func-
tions. For this study the ANFIS model was implemented 
in the Matlab environment using the functions available 
from the fuzzy logic toolbox. 

Support vector machines (SVMs) [3] are supervised 
learning models with associated learning algorithms that 
analyze data and recognize patterns, and can be used for 
classification and, as in our case, adapted for regression 
analysis. The SVM was implemented using LibSVM [1] 
under the Matlab environment. 

3. Baseline  

Previous works usually use error metrics such as the Root 
Mean Square Error – RMSE (see section 5.4) as indica-
tors for the performance of the forecast. Usually these 
metrics are good enough to compare different approaches, 

but are not very relevant in terms of absolute value in the 
absence of a ground truth, i.e., of some comparison base-
line.  

Autoregressive–moving-average (ARMA) and other 
Box & Jenkins models 0 are the most used techniques for 
monthly stream flow forecast in hydric energy planning, 
and could be considered as a baseline. However, such 
methods are not well adapted to non stationary time se-
ries, and even though they can give acceptable results for 
accumulated monthly forecasts, they simply are not ade-
quate to the one day ahead forecast problem, where flow 
variations have a much more complex dynamics. In [14] 
it can be seen that these methods provide acceptable er-
rors in “well behaved” months, but the error escalates 
much more than when using non-linear models in months 
with high flow variations.   

A very simple baseline consists in using the assump-
tion that next day flow will be the same as the current day 
observation. One of the major pitfalls of the existing stud-
ies is ignoring the fact that their results might even be 
worse than this simple baseline, and even recent studies 
[24] present techniques that simply fail to beat it. This de-
notes the difficulty of predicting stream flows. It is im-
portant to present the results with this metric in mind and 
set objectives, not only surpassing previous studies met-
rics, but also certifying that the baseline metric is also im-
proved. 

 
Fig. 1: Baseline line (in red) and original stream flow signal 

(blue) comparison. The baseline is the assumption t + 1 = t from 
one of the datasets used in this study (Cavez). 

The chosen baseline can also be used to demystify the 
commonly used graphs showing the forecast vs. the data 
series. Fact is that such graphs are not useful due to the 
size of the datasets (covering several years and containing 
thousands of data points – see section 3). Let us see the 
example presented in Fig.1, where is represented the fore-
cast given by the proposed baseline in one of the studied 
datasets. In blue we can see the dataset, and in red the 
forecast. In print hardly any differences between the two 
signals are visible, hinting an excellent performance. 
However, if instead of showing the forecast for 2000 
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days, we show a much smaller period, e.g. from day 700 
to 800 (Fig. 2), it is clear that we are simply using the 
proposed baseline, i.e., assuming that the next day flow 
will be identical to current day observation. Considering 
that in most previous work the difference between the 
forecast and the dataset is clearly visible when showing 
the complete dataset, it is easy to show that these graphs 
are not good performance indicators unless a proper scale 
is used.  

 
Fig. 2: Baseline line (in red) and original stream flow signal 
(blue) comparison for the Cavez dataset from day 700 to day 

800. The one day delay becomes clearly visible. 

4. Datasets  

The datasets used in this work are representative of re-
gions with different climates. Table 1, presents some rel-
evant flow information regarding these datasets. The Cas-
tanheiro dataset has 30 years of training data and 8 for the 
testing set. The Cavez has 7 years of training and 3 years 
of testing data. The Pailugou dataset has 3 years of train-
ing data and 3 for testing. The Três Marias has 10 years of 
training and 3 years of testing. 

 
Table 1 also includes some relevant statistical parame-

ters of the used datasets. It is possible to observe that the 
maximum flows are highly skewed from the minimum 
flows, and that the mean is only a small fraction of the 
maximum flows. The Pailugou dataset has a higher mean 
due to the high peaks and the dry seasons that have close 
to zero stream flows. The mean of the Três Marias dataset 
is an order of 15% of the maximum, while the others are 
around 3% to 6%. This is due to a higher and more con-
stant flow throughout the year. 

5. Data Preprocessing  

In any model development process, familiarity with the 
available data and its preprocessing is of utmost im-
portance since it usually has a positive effect on the mod-
el performance [5][22]. The characteristics of the used 
datasets (especially the skew toward minimum flows) and 
the used techniques, led us to test the application of loga-
rithmic transformations and to normalize all input values: 
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 (13) represents the logarithmic transformation: qi
log is 

the logarithmic transformed stream flow and qi is the real 
stream flow value; the unitary value is added to all the 
stream flows in the logarithmic function to avoid frac-
tions. (14) represents the inverse transformation used to 
transform the logarithmic stream flows into real world 
values. Before the inputs are introduced into the models 
they are normalized in order to have values ranging from 
0 to 1 (a buffer is used to prevent limit conditions for all 
used techniques). (16) is used for input normalization, and 
(17) is used to transform the outputs of the models to real 
values. 

6. Models’ Development  

All models will take as inputs the observed current day 
stream flow (Qt), expressed in cubic meter per second 
(m3/s), and a given number of past Qt-d observations, with 
d = 1,…,j being the previous j day stream flow. The flow 
variation between day k and day l, įkl = Qt-k - Qt-k-l was 
also tested as a possible input.  

The choice for the range of tested inputs was based on 
[7] and [24], where the best results are obtained with no 
more than 3 delays as inputs. The differentiated inputs are 
also found in the literature as an option, hence its inclu-
sion in the current study. All different combinations for 
these inputs were tested when optimizing the models 
(e.g.1, use Qt-1 and Qt ; e.g.2, use Qt-2 Qt-1 Qt and į01; etc.). 

 
6.1. ANN Model 

When developing an ANN model the selection of the ar-
chitecture is the first step. In the literature there is no con-
sensus on number of layers and neurons for each layer. 
Therefore we started by following the procedures de-
scribed in [24] in order to replicate the described results. 
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TABLE 1 
TRAINING SETS (MAX, MIN AND MEAN FLOWS IN m3/s) 

Dataset Max Min Mean Std dev Points 

Castanheiro 1384 0 45,78 98,28 10958 
Cavez 582 0,47 24,0 41,7 2737 
Pailugou 9604 4,00 617,7 1046 1095 
Tres Marias 4275 48 642,1 678,7 3653 

TESTING SETS 

Dataset Max Min Mean Std dev Points 

Castanheiro 1124 0,05 33,2 75,8 2922 
Cavez 453 0,98 27,0 44,1 1095 
Pailugou 8841 7,29 559,7 1082 1095 
Tres Marias 4707 80 702,5 697,0 1461 
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Then we proceeded to the model optimization in order to 
try to improve the obtained results. 

    A simple three layer feedforward network architecture 
was selected. For the selection of the number of neurons 
on the hidden layer, various simulations were performed. 
The simulations varied the number of neurons on the hid-
den layer from 2 to 15. The training function selected was 
the trainlm, which implements the Levenberg-Marquardt 
training algorithm [13]. The training function has various 
parameters that need to be set: 

1) Maximum number of epochs to train: 1000; 

2) Performance goal (MSE): 0; 

3) Minimum performance gradient:10-10; 

4) Initial µ: 0.001; 

5) µ decrease factor: 0.1; 

6) µ increase factor: 10; 

7) Maximum µ:1010; 

8) Maximum time to train in seconds: inf; 

These are the default values for these parameters and 
stopping conditions. No guidance was found on the litera-
ture towards recommendations or optimal parameters, 
therefore the default values were used. The tests per-
formed were done with logarithmic transformed data and 
normalization and also only normalization. A series of 
tests with different hidden neurons were tried for each set 
of inputs and the model with the lowest RMSE are select-
ed to be the best models for further analysis. 

 
6.2. ANFIS Model 

We started by replicated the model described in [24]. 
However it was not possible to obtain the details for the 
training parameters. Therefore, the following default pa-
rameters for the stopping conditions were used: 

1) Training epoch number: 50; 

2) Training MSE goal:0; 

3) Initial step size: 0,01; 

4) Step size decrease rate: 0,9; 

5) Step size increase rate: 1,1. 

Triangular functions were selected to be associated 
with the input parameters following the recommendation 
in [24], where this function was found to give better re-
sults for the prediction of stream flow time series (even if 
the differences were not much relevant). The number of 
membership functions for each input was found to be very 
influential, so simulations were performed for all possible 
combinations from 2 to 4 membership functions per input 
variable. 

The simulations were performed using both normal-
ized inputs and logarithmic transformed inputs. 50 epochs 
were selected to be the stopping criteria. The model with 
the lowest RMSE was selected as the best models and 
then further analyzed. 

 
6.3. SVM model 

The optimization of the SVM model focused on the C and 
Ȗ parameters. The Radial Basis Function (RBF) was cho-
sen as kernel function (following the recommendations 
and procedures from [24]). 

The grid search method from [2] and [24] was imple-
mented trying both İ-SVM and Ȟ-SVM. The results were 
not satisfactory and very different from the ones in the 
literature. Hence, multiple combinations of C and Ȗ were 
trained and tested using cross-validation. Ranges for C 
and Ȗ were as follows: 

1) C = 2n with n = -5,-4,…,5; 

2) Ȗ = 2n with n = -5,-4,…,3. 

The Ȗ obtained in previous studies were small num-
bers, in the order of 2-3. Since the search space is almost 
infinite for these parameters, a start point had to be de-
fined. Between all the simulations the RMSE was com-
pared and the model with the lowest error was selected 
for further analysis. Ȟ-SVM yielded better results than İ-
SVM, with Ȟ = 0.5. 

 
6.4. Performance metrics 

The following metrics were used to evaluate the perfor-
mance of each model: 
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where N is the number of points, di is the predicted 
value from the model and yi and шi are the observed flow 
and the mean of the observed flows, respectively. 

 The Mean Square Error (MSE) measures the mean 
squared error of the prediction, bringing emphasis to high 
prediction errors in detriment of the errors with decimal 
values. 
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The Mean Absolute Error (MAE) measures the mean 
deviation each prediction has. 

The Mean Absolute Percentage Error (MAPE) 
measures the percentage deviation from the prediction to 
the measured value. 

Finally the Nash-Sutcliffe (NS), also called Coeffi-
cient of Efficiency [10], that is used in measuring hydrol-
ogy forecasting models’ performance. This metric also 
measures the ability of a model to predict values that are 
different from the mean. A 0.9 value is considered a very 
good model and values between 0.8 and 0.9 represent a 
fairly good model and any value below 0.8 is considered 
unsatisfactory [23]. 

7. Results and Discussion 

Table 2 resumes the best results obtained in each da-
taset for each optimized model (and the baseline). It also 
includes the results obtained on previous works (where 
applicable). The best performance for each metric is high-
lighted in bold. 

When replicating previous works’ models, many dis-
crepancies were found between the obtained results and 
the published ones when implementing the same architec-
ture, especially in what concerns the ANN models. In 
some occasions we obtained better results, in others we 
could not approach them. This might be partially ex-
plained by the lack of information on the training algo-
rithm stopping criteria and parameters. This fact ended up 
not being of much relevance since the performed optimi-
zations allowed us to improve all the previous published 
results for each technique (all RMSE were lower). It 
should be noted that in the case of the Pailogou dataset 
the previously published results did not beat the baseline 
[24]. 

One exception should be noted: due to the lack of in-
formation (the authors did not reply to our requests), we 
were not able to replicate the input preprocessing method 
used in [7]. The method, which uses ANN and some sort 
of input convolution, arguably allowed the authors to ob-
tain a very low forecast RMSE in the Castanheiro dataset 
(an improvement of almost 30% over our baseline).  Un-
fortunately we were not able to verify the results and/or 
generalize the efficiency of the input convolution method 
to other methods and datasets. 

Overall it is noticeable that, after optimization, all 
techniques obtain very similar results on each dataset, al-
lowing for an improvement between 5% and 10% over 
the baseline. 

 

 

 

 
Fig. 3 Scatter plots of the best techniques for the 4 datasets. a)  

Castanheiro (ANFIS); b)  Cavez (ANFIS); c)  Pailugou (ANN); 
d)  Tres Marias (SVM). 
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On average ANFIS gave the best results, but no tech-
nique was better than the others in all the datasets. More-
over, the error metrics yielded different techniques as 
“winners” for different datasets. This further concludes 
that none of the implemented techniques is more suitable 
to stream flow forecasting than the other. One should also 
mention each technique used different inputs and different 
architectures to achieve the best results. Also, on different 
datasets each technique reached the best results with dif-
ferent inputs. This hints that it is necessary to perform ex-
tensive parameter optimization whenever addressing 
stream flow forecasting in new datasets.  

According to the Coefficient of Efficiency (NS), the 
optimized forecasts were considered very good in the 
Três Marias (0.97) and Pailugou datasets (0.91), good in 
the Cavez dataset (0.84) and fairly good in the Castanhei-
ro dataset (0.80). 

An unusual result is the fact that training errors are 
higher than the errors in the test sets. This is probably due 
to the fact that the training sets have a higher flow peaks 
to total number of points ratio, implying that the test sets 
were easier for the models to predict than the training 
sets. 

Regarding the effect of input preprocessing, both ANN 
and ANFIS models produced the best results when their 
inputs were preprocessed using the logarithm function 
(the only exception was with ANN for criteria RMSE in 
the Castanheiro dataset). The SVM did not show much 
improvement with the logarithm preprocessing. 

Figure 3 shows the flow scatterplots (real vs. forcast-
ed) for the best technique in each dataset. As expected, 
the largest deviations occur with the larger flows. 

Figure 4 shows how the best technique in each dataset 
behaves in the most difficult section of the dataset. Even 
if the results seem very good, further zoom-in shows that 
no method is able to forecast sudden flow variations, al-
most always exhibiting a one-day delay period of adapta-
tion in the most extreme cases. 

8. Conclusions  

In this paper we addressed the problem of one day ahead 
stream flow forecasting by comparing and optimizing hy-
brid and computational intelligence techniques. 

One of the first remarks from the discussed results is 
the applicability of the logarithm transformation for 
stream flow forecasting. After implementing this prepro-
cessing step, the ANN and ANFIS models decreased their 
MAE considerably. This transformation function can help 
these models predicting stream flows. 

 

 

 
 

 

 
Fig. 4 Highest peak close-up of the best forescast in each da-

taset. a) Castanheiro (ANFIS); b) Cavez (ANFIS); c) Pailugou 
(ANN); d) Tres Marias (SVM). 
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Even if it was possible to obtain improvements over 
the baseline and good NS values, it is important to men-
tion that none of the techniques produced good results in 
what concerns the peak flows forecast. The scatter plots 
demonstrated that the high flows have the highest errors, 
and all the techniques in all datasets displayed a constant 
displacement in relation to the expected output in such 
situations. Therefore, we can conclude that this is a (rele-
vant) problem these models were not able to resolve. 

The optimized ANN, ANFIS and SVM gave similar 
results for all datasets. One cannot consider one technique 
to be more suitable than the other for this application. It 
was also possible to conclude that there is no specific pa-
rameter selection or architecture that is more favorable for 
the stream flow forecasting problem. Parameter and input 

optimization is necessary when approaching new datasets 
since the results from the models cannot be generalized. 

Finally we can add that, in case it is not possible to 
experiment with several techniques, ANFIS would be the 
most appropriate choice, logarithm preprocessed inputs 
should be used, and the flow variation between current 
day and previous day (į10) should be included in the input 
set.  

The presented work is obviously not final. Other 
available hybrid techniques could be implemented and 
compared to the existing results, and an even more exten-
sive study to select the best combination of inputs should 
be made. The convolution technique applied to the inputs 
presented in [7] should also be validated, implemented 
and tested using other techniques and datasets.  

 
TABLE 2 

RESULTS WITH BEST RMSE FROM THE SIMULATIONS 

Castanheiro Inputs Arch. 
Test Training 
RMSE MAE MARE NS R RMSE MAE MARE NS R 

Baseline t t+1=t 32,83 7,45         
ANN(**) t-2, t-1, t 3-4-4-1 21,98 5,19 n/a 0,92       
ANN t-3, t-2, t-1, t 3-5-1 30.06 6.81 19.18 0.8034 0.9186 35,22 10,75 29,99 0,8217 0,9208 
ANFIS į01, t-2, t-1, t 4.2.3.2 29,99 6,71 17,88 0,7995 0,9194 35,98 9,10 18,55 0,7907 0,9187 
SVM t-2, t-1, t 2-2, 4 31.11 6.44 17.02 0.7511 0.9179 38,63 9,01 19,45 0,7138 0,9122 

 

Cavez Inputs Arch. 
Test Training 
RMSE MAE MARE NS R RMSE MAE MARE NS R 

Baseline t t+1=t 15,66 4,38         
ANN t-3, t-2, t-1, t 4-4-1 14.37 3.96 13.70 0.8307 0.9334 15,95 4,32 13,68 0,8600 0,9376 
ANFIS į01, t 3.2 14,33 4,06 13,98 0,8452 0,9323 16,19 4,15 13,27 0,8565 0,9356 
SVM į01, t-2, t-1, t 32, 2-5 14.76 3.80 13.33 0.8175 0.9306 16,83 4,10 13,35 0,8317 0,9317 

 

Pailugou Inputs Arch. 
Test Training 

RMSE MAE MARE NS R RMSE MAE MARE NS R 
Baseline t t+1=t 337,69 73,18         
ANN(*) t-2, t-1, t 3-5-1 388,26 n/a 12,80 0,871 0,938 444,67 n/a 16,12 0,820 0,906 
ANN t-3, t-2, t-1, t 4-6-1 304.54 73.88 12.51 0.9076 0.9605 412,37 115,23 17,59 0,8119 0,9198 
ANFIS(*) t 3 368,26 n/a 12,03 0,884 0,947 442,05 n/a 15,84 0,822 0,907 
ANFIS t-2, t-1, t 1, 2-5 307.50 78.15 12.47 0.9041 0.9602 399,66 118,69 21,63 0,8294 0,9243 
SVM(*) t-2, t-1, t 16, 0,25 364,56 n/a 11,71 0,887 0,947 399,64 n/a 14,44 0,854 0,925 
SVM t-2, t-1, t 1, 2-5 307.50 78.15 12.47 0.9041 0.9602 456,65 125,18 18,16 0,7666 0,9005 

 

Tres Marias Inputs Arch. 
Test Training 
RMSE MAE MARE NS R RMSE MAE MARE NS R 

Baseline t t+1=t 112,46 49,30         
ANN į01, t 2-10-1 101.72 39.61 4.43 0.9772 0.9895 168,10 66,84 9,14 0,9346 0,9688 
ANFIS į01, t 3.4 103,01 39,69 4,38 0,9770 0,9890 162,92 61,50 7,69 0,9371 0,9709 
SVM į, t-2, t-1, t 16, 2-5 100.51 40.96 4.58 0.9775 0.9897 184,93 66,29 8,08 0,9226 0,9624 
(*) – models from [24] 
(**) – model from [7] 
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