
Topic Detection within Public Social Networks

Hugo Hermógenes Lopes da Costa Rosa

Thesis to obtain the Master of Science Degree in

Electrical and Computer Engineering

Supervisors: Prof. João Paulo Baptista de Carvalho

Prof. Fernando Manuel Marques Batista

Examination Committee

Chairperson: Prof. Nuno Cavaco Gomes Horta.

Supervisor: Prof. João Paulo Baptista de Carvalho

Member of the Committee: Prof. Bruno Emanuel da Graça Martins

April 2014



ii



Acknowledgements

Foremost, I would like to express my gratitude to Prof. João Paulo Carvalho for his guidance

and direction. His clear mindedness and objective approach kept me on task, while always giving

me room to try out new ideas.

I would also like to thank Prof. Fernando Batista for his continued contribution and excitement

while discussing all aspects of this thesis.

This thesis was supported by national funds through FCT Fundacão para a Ciência e a Tec-

nologia, under project PTDC/IVC-ESCT/4919/2012 and project PEst-OE/EEI/LA0021/2013.

I dedicate this to Diana Rocha, for her love and support. She knows when to push me to do

better and when to let me push myself. This became ever so clear during this thesis.

Finally, I would like to thank my parents and family for their support and trust in the education

they provided me with. They always respect my decision making capabilities even when if they

may disagree from the decision itself.

iii



iv



Resumo

A Deteção de Tópicos é uma disciplina cujo objetivo é determinar o tema de um dado documento,

a partir de um conjunto de tópicos predefinidos. Através de várias técnicas de pre-processamento,

o texto de um documento é transformado em algo que um classificador automático consiga ler

e interpretar.

Nesta dissertação, aborda-se o tema da Deteção de Tópicos no Twitter através de uma nova

técnica chamada “Twitter Topic Fuzzy Fingerprints”. Inspirada na analogia das impressões

digitais em cenas de crime, constrói-se uma lista de palavras-chave que compõem a impressão

digital de um dado tópico. Posteriormente, avalia-se um conjunto de tweets cujo tema não esteja

explicitado e calcula-se a sua semelhança com várias impressões digitais de tópicos.

Compara-se também a eficácia deste método com a de outros dois muito populares, nomeada-

mente Support Vector Machines (SVM) e K-Nearest Neighbors (kNN).

Os resultados apresentados revelam que o Twitter Topic Fuzzy Fingerprints obtém melhores

resultados que os métodos supra mencionados. Adicionalmente, o método apresentado também

é mais rápido na sua execução, o que representa um parâmetro de particular interesse quando

se processa uma quantidade elevada de dados.

Palavras chave:

Deteção de Tópicos

Twitter

Fuzzy Fingerprints

Data Mining em Redes Sociais

v



vi



Abstract

Topic Detection aims to determine the topic of a given document, given a predetermined large

set of possible topics. Through several preprocessing techniques, it transforms its unstructured

textual form into something a automated classifier can read and make decisions upon.

In this thesis, we propose to approach the subject of Tweet Topic Detection using a new technique

called Twitter Topic Fuzzy Fingerprints. Inspired by the crime scene fingerprint analogy, a list

of keywords that perfectly identifies a given topic is composed. Afterwards, uncategorized tweets

will be matched against those fingerprints in and its similarity determined.

A comparison is made between the Twitter Topic Fuzzy Fingerprint and two popular text

classification techniques, Support Vector Machines (SVM) and k-Nearest Neighbors (kNN).

The results show that Twitter Topic Fuzzy Fingerprints outperforms the other two techniques

achieving better precision and recall, while still being much faster, which is an essential feature

when processing large volumes of streaming data.

Keywords:

Topic Detection

Twitter

Fuzzy Fingerprints

Social Networks Data Mining

vii



viii



Contents

Resumo v

Abstract vii

List of Figures xii

List of Tables xiv

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Structure of this Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Related Work 5

2.1 Text Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Information Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Natural Language Processing . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Text Categorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Document Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.2 TF-IDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.3 Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Classification Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.1 k-Nearest Neighbours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.2 Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Topic Classification vs Topic Detection . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Twitter Data Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

ix



3 Twitter Data 23

3.1 Public Streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Trending Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Text Preprocessing 25

4.1 Stopwords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Short Length Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 Stemming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.4 Word Spell Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.5 Twitter Username . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 The Fuzzy Fingerprint Algorithm 31

5.1 Original Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1.1 The Filtered Space-Saving Algorithm . . . . . . . . . . . . . . . . . . . . 32

5.1.2 Membership Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1.3 Similarity Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2 Twitter Topic Fuzzy Fingerprints . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2.1 Building the FingerPrint . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2.2 Membership Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2.3 Tweet-Topic Similarity Score . . . . . . . . . . . . . . . . . . . . . . . . . 37

6 Tests and Results 39

6.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.2 Data Set I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2.1 Training Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2.2 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2.2.1 Scenario A - NO Stemming and NO Stopword Removal . . . . . 41

6.2.2.2 Scenario B - NO Stemming and YES Stopword Removal . . . . 42

6.2.2.3 Scenario C - YES Stemming and NO Stopword Removal . . . . 42

6.2.2.4 Scenario D - YES Stemming and YES Stopword Removal . . . . 45

6.2.3 Results Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2.3.1 Best T2S2 Value . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2.3.2 Importance of Fingerprint Size . . . . . . . . . . . . . . . . . . . 47

6.2.3.3 Importance of Minimum Sized Words . . . . . . . . . . . . . . . 48

6.2.3.4 Importance of Removal of Stopwords . . . . . . . . . . . . . . . 49

6.2.3.5 Importance of Stemming . . . . . . . . . . . . . . . . . . . . . . 51

x



6.2.3.6 Execution Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.2.4 Most Effective Case Scenario . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.2.5 Comparison to Other Methods . . . . . . . . . . . . . . . . . . . . . . . . 52

6.2.5.1 Twitter Topic Fuzzy FingerPrint vs kNN . . . . . . . . . . . . . 53

6.2.5.2 Twitter Topic Fuzzy FingerPrint vs SVM . . . . . . . . . . . . . 55

6.2.5.3 Overall Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2.5.4 Execution Efficiency Comparison . . . . . . . . . . . . . . . . . . 56

6.3 Data Set II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.3.1 Training Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.3.2 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.3.3 Results Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.3.4 kNN and SVM Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.4 Data Set III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.4.1 Training Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.4.2 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.4.2.1 Scenario A - NO Stemming and NO Stopword Removal . . . . . 61

6.4.2.2 Scenario B - NO Stemming and YES Stopword Removal . . . . 62

6.4.2.3 Scenario C - YES Stemming and NO Stopword Removal . . . . 63

6.4.2.4 Scenario D - YES Stemming and YES Stopword Removal . . . . 66

6.4.3 Result Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7 Conclusion 69

7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

A Data Sets Distribution 75

B Lists of Words 77

B.1 English Stopwords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

B.2 Spanish Stopwords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

B.3 Portuguese Stopwords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

xi



xii



List of Figures

2.1 Binary Bag-of-Words Representation . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 SMART notation for tfidf variants. . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Example of the K Nearest Neighbour Algorithm . . . . . . . . . . . . . . . . . . 12

2.4 Two dimensional Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Two dimensional Support Vector Machine - Linear and Non-Linear Kernels . . . 14

2.6 Two dimensional Support Vector Machine - The effect of the soft margin . . . . 15

2.7 Statistical use of the term “computer” in Twitter from Oct.2009 to Jan.2010 . . 16

2.8 Statistical use of the term “earthquake” in Twitter from Oct.2009 to Jan.2010 . 16

2.9 Text-based accuracy comparison over different classification techniques . . . . . . 19

2.10 Network-based accuracy comparison over different classification techniques . . . . 19

2.11 Traffic in tweets per hour, relating to Michael Jackson’s death . . . . . . . . . . . 20

2.12 Topics by user Tweeting habits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 Regex Expression for Tokenizing Method . . . . . . . . . . . . . . . . . . . . . . 25

5.1 Featured Space-Saving Algorithm Diagram . . . . . . . . . . . . . . . . . . . . . 33

5.2 Fuzzyfing functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.3 Pseudo-Code to explain data structure used . . . . . . . . . . . . . . . . . . . . . 36

5.4 Pseudo-Code to explain the similarity calculation . . . . . . . . . . . . . . . . . . 37

6.1 Num. of tweets with T2S2 >= 0.10 per % of tweet matching words with fingerprint 47

6.2 Impact of Fingerprint Size on performance . . . . . . . . . . . . . . . . . . . . . . 48

6.3 Impact on performance as the minimum size of words kept is varied . . . . . . . 49

6.4 Impact of stopwords removal in performance . . . . . . . . . . . . . . . . . . . . . 50

6.5 XML format of the Training Set TASS tweets . . . . . . . . . . . . . . . . . . . . 62

xiii



xiv



List of Tables

2.1 All the Events Detected by EDCoW in June 2010 . . . . . . . . . . . . . . . . . . 18

5.1 Fingerprint hash table before and after ITF . . . . . . . . . . . . . . . . . . . . . 36

6.1 Results for Data Set I - no stemming and no stopword removal . . . . . . . . . . 41

6.2 Results for Data Set I - no stemming but with stopword removal . . . . . . . . . 43

6.3 Results for Data Set I - with stemming but with no stopword removal . . . . . . 44

6.4 Results for Data Set I - with stemming and with stopword removal . . . . . . . . 46

6.5 Summary of the Best Case Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.6 Numerical analysis of the importance of removing short words . . . . . . . . . . . 49

6.7 Numerical analysis of the importance of removing stopwords and stemming . . . 50

6.8 Execution Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.9 kNN’s performance for Scenarios A,B,C and D . . . . . . . . . . . . . . . . . . . 53

6.10 kNN’s performance Best Case Scenario . . . . . . . . . . . . . . . . . . . . . . . . 54

6.11 kNN vs Twitter Topic Fuzzy Fingerprint . . . . . . . . . . . . . . . . . . . . . . . 54

6.12 SVM’s performance for Scenarios A,B,C and D . . . . . . . . . . . . . . . . . . . 55

6.13 SVM performance Best Case Scenario . . . . . . . . . . . . . . . . . . . . . . . . 55

6.14 SVM vs Twitter Topic Fuzzy Fingerprint . . . . . . . . . . . . . . . . . . . . . . 56

6.15 Overall Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.16 Execution Speed Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.17 Twitter Topic Fuzzy Fingerprint Performance . . . . . . . . . . . . . . . . . . . . 59

6.18 Results for Data Set II - no stemming and no stopword removal . . . . . . . . . . 63

6.19 Results for Data Set II - no stemming and with stopword removal . . . . . . . . . 64

6.20 Results for Data Set II - with stemming and no stopword removal . . . . . . . . . 65

6.21 Results for Data Set II - with stemming and with stopword removal . . . . . . . 67

A.1 Training Set Trend Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

A.2 Test Set Trend Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

xv



xvi



Chapter 1

Introduction

1.1 Motivation

Social networks have forever changed the way we behave. Many websites such as Facebook

and Twitter, attempt to mimic real life interactions in the digital world of the Internet. Now,

more than ever, anyone can go online and post their favorite song, announce a life milestone

accomplishment, comment on a trending news topic or just chat.

In the 21st century, social networks have become the de facto means for individual opinion

making and, consequently, one of the main shapers of an individuals perception of society and

the world that surrounds him.

Twitter has become a major tool for sociological analysis. From its influence on the Arab Spring

to the London riots, even news agencies have had to adapt and start using social networks as

sources of information.

Twitter was even an important tool used amongst the London rioters to arrange for demon-

stration locations. What about the death of Michael Jackson? For two days, it was literally

impossible to not come across a “RIP Michael Jackson” post.

Because of the amount of existing information in these platforms, they have become a subject

of interest and analysis by many different research fields, even those outside of the information

technology branch, such as Psychology and Sociology.

The scope of this particular thesis however, stays well within IT area, focusing on Text Mining

and the task we shall henceforth name “Tweet Topic Detection”.

According to [1], as of March 2013, Twitter has “well over 200 million active users creating over

400 million Tweets each day”. It stands out from all other social networks because of its unique

140 character limit and innovative topic identification mechanism.

On the one hand, having such a short amount of information to write per tweet, the average

1



user will tend to either use acronyms or even misspell words to save a character or two. On

the other hand, users will be more succinct when writing and will often use richer words to put

across their thoughts. This presents both a challenge and a hopeful mindset towards what a

computer can do to extract meaning out of tweets.

On the subject of topic detection, Twitter has created the concept of the # (hashtag), which

works as a form of meta data. When anyone uses the # in front of any word, Twitter will

identify it as being the topic in discussion. It even goes as far as grouping all the tweets that

share the same hashtag, therefore making it easy to keep track of all posts that relate to a

common theme. Let us take a look at an example:

On September 4th, 2013, the well known British comedian Ricky Gervais posted:

Dear #Australia! Brand new episode of #Derek on #ABC1 tonight at 10pm! RT if you’re going

to watch! pic.twitter.com/dxVf72tn80 Cheers :)

From this tweet, we know that he is promoting his new hit TV show “Derek” in Australia. Since

it was perfectly hashtagged as (#Derek), any user could now tweet the text below and we would

be certain the topic is the same.

I’m watching #Derek on #ABC1. It’s hilarious.

Celebrities, institutions, politicians, television networks and frequent users understand the power

of the # and use it often to guarantee maximum connection to their fans and customers. Twitter

even gives users access to the current “Trending Topics”, so that they can jump on that dis-

cussion, should they choose to. It is also very common to see hashtags relating to catastrophes

around the world. Can one even imagine the swarm of tweets that would pour down if Twitter

had been around during the 9/11 incident.

However, not everybody uses the # and many topic related tweets will go unnoticed, if not

properly categorized. According to [2], out of a 1,318,323 tweet data set, only 15.9% contain

hashtags and 4.5% use multiple hashtags.

In this thesis, we will use the 15.9% in order to take a closer look at the remaining 84.1%,

with particular focus on English, Portuguese ans Spanish tweets, thus performing Tweet Topic

Detection.

2



1.2 Goals

The goal of this thesis is to present a novel method in Tweet Topic Detection - Twitter Topic

Fuzzy Fingerprint Algorithm.

This approach will avoid the more common and processor heavy space vector classification

solutions, such as Support Vector Machine (SVM) and K-Nearest Neighbor (kNN), and focus on

a score based output. In other words, the tweets will be scored from 0 to 1 in terms of similarity

to a given top trend, where 0 means “not similar at all” and 1 means “totally similar”.

In the process of developing this solution, the impact of several text preprocessing techniques

such as stopwords, stemming and dimensionality reduction will be taken into account and its

effectiveness in the Twitter language evaluated.

Finally, we compare our method with other well known and successful Topic Classification

algorithms.

1.3 Contributions

The main contributions of this thesis to Topic Detection and Social Networks Data Mining, are

the development of a novel method, Twitter Topic Fuzzy Fingerprints, that:

• provides good results in detecting top trends in non hashtagged tweets;

• in the context of Twitter, outperforms other well known classifiers;

• is faster than two of the best classifiers to date;

In the context of this thesis, an article named “Twitter Topic Fuzzy Fingerprints”, with pre-

liminary results on our new algorithm, was submitted and accepted to the 2014 IEEE World

Congress on Computational Intelligence.

Another article, named “Detecting a tweet’s topic within a large number of Portuguese Twitter

trends”, which studied the impact of increasing number of topic fingerprints on our method, was

submitted and accepted to the 2014 Symposium on Languages, Applications ant Technologies.

In addition, a magazine article names “Efficient Twitter Topic Detection using Fuzzy Finger-

prints” has recently been submitted to Applied Soft Computing.

1.4 Structure of this Document

This thesis starts out by explaining the foundations of text handling by computers. It lays down

the basis for understanding the proposed method and then further details into other studies

3



done upon Twitter.

We then explain how Twitter provides an API for developers to work its data and processes.

In Chapter 4, we discuss several well known preprocessing techniques that were considered for

our proposed algorithm in hopes that the Results chapter will prove them efficient.

In Chapter 5, the origin of the Fuzzy Fingerprint method is presented. Stemming from a previous

study in a similar area, we provide the contextual differences to Twitter and then detail on the

decisions made to make it more appropriate to such short documents as tweets.

Finally, the performance of the Twitter Topic Fuzzy Fingerprint algorithm is presented from

results on three very distinct data sets. A detailed analysis is performed and conclusions are

drawn.

4



Chapter 2

Related Work

In order to understand the problem with extracting and making sense of the information on

social networks, we must first comprehend the basics of a concept know as Text Mining.

In this chapter, we will go through the backbone state-of-the-art techniques that support this

thesis and incorporate them with the context of Twitter. We will understand how different

classifying algorithms work and how their success is measured. We will take a look at other

projects that, much like this thesis, dive into the realm of extracting information and patterns

from Twitter.

2.1 Text Mining

“Text Mining can be broadly defined as a knowledge-intensive process in which the user interacts

with a document collection over time by using a suite of analysis tools” [3]. Essentially, this

means that “text mining seeks to extract useful information from data sources through the

identification and exploration of interesting patterns”. In this thesis, our data source are the

tweets and our patterns are its topics.

One of the most appealing things about this subject is that, contrary to how computers handle

most data, text is an unstructured form of information. Consider the following sentence ex-

tracted from [4]:

Alice saw the rabbit with glasses

Looking at this sentence, it is hard to tell whether Alice saw a rabbit wearing glasses, or if she

was might have worn glasses when she saw the rabbit. This is one of the main reasons why “the

automatic understanding of text is a complex undertaking” [4].

5



However, if a collection of documents on the topic of “Alice in Wonderland” were to be compiled,

a study of patterns and keywords would make it clear that the sentence belonged to that topic.

These are the problems that Text Mining tries to provide solutions for, and are problems that

resonate with this work’s attempt at detecting topics on Twitter. This thesis evaluates the

use of many of its pre-processing techniques and aims to compare itself with its well know

categorization methods.

Although Text Mining has been around since the late 80’s , it is historically dependent on a much

older and large body of research in Information Retrieval and Natural Language Processing.

However, it is not a replacement. It simply “seeks to find answers to questions that are difficult

or impossible to answer with search engines alone” [4].

2.1.1 Information Retrieval

Information Retrieval is the process of getting the information from a collection of documents,

based upon a query.

According to [4], “IR’s long history began in the 1960s, when computers systems were being built

to handle unstructured text. Many of these systems were large mainframes with proprietary

software and interfaces to specialized document collections. In the 1980s, the PC was linked

to these mainframe systems with an intermediary interface to search and retrieve data. (...)

Until the mid-1990s, most IR development efforts concentrated on building comprehensive text

databases and on improving performance and connectivity.”

Searches begin with a need for information and is based upon explicit keywords. The user’s

query can sometimes be really complex and, as a result, so will the answer be. “In most cases,

procedural questions are not answered in a single sentence” [4]. “The answer may be found in

one or more sources”.

2.1.2 Natural Language Processing

“Natural Language Processing began has a subtopic of Artificial Intelligence” [4]. “One of the

original aims was to build a machine that could communicate in natural language. The two

main problems that needed to be solved were understanding natural language and generating

natural language”.

The problem of understanding natural language is common to this thesis. According to [4],

“shallow approaches were found to be successful for specific tasks”, which is why “Natural

Language Processing has come to mean the analysis or synthesis of natural text” as opposed to

the understanding of text.

6



2.2 Text Categorization

One of the main goals in most studies done in this area, is to automatically classify the document,

in our case, the tweet. This process, known as Text Categorization, is broadly defined by [3] as

“the task to classify a given data instance into a pre-specified set of categories. (...) Given a

set of categories (subjects, topics) and a collection of text documents, the process of finding the

correct topic (or topics) for each document.”

Text categorization uses machine learning methods to learn automatic classification rules, in

which “a general inductive process builds a classifier by learning from a set of pre-classified

examples” [3]. In the context of this thesis, our training set are tweets where the topic in

question is perfectly identified by the hashtag. Our test set are tweets where the given # is not

present.

2.2.1 Document Representation

It is very important to establish that text is in a unstructured form of data, which “common

classifiers and learning algorithms cannot directly process” [3]. Thus, during the preprocessing

step, our documents/tweets must be converted into a more manageable form.

The most familiar representation is the bag-of-words model. According to [3], “it simply uses

all words in a document as features, and thus the dimension of the feature space is equal to the

number of different words in all of the documents”. It completely disregards syntax and word

order. For instance, consider the following three sentences:

• John bought a car

• I love driving my car

• I love John

With these three texts, a dictionary is constructed as: {John, bought, a, car, I, love, driving,

my}. The collection would then be binary represented as:

Am,n =


1 1 1 1 0 0 0 0

0 0 0 1 1 1 1 1

1 0 0 0 1 1 0 0


Figure 2.1: Binary Bag-of-Words Representation

Where m = 3 represents the number of documents, and n = 8 is the total number of unique

features according to the previously mentioned dictionary.

7



In figure 2.1, the words are presented in binary fashion. Which means, they only tell whether

a given term exists in the document, without detailing on its importance to the collection of

documents. A more common representation is the TF-IDF scheme, which combines the concept

of term frequency with inverse document frequency.

2.2.2 TF-IDF

The TF-IDF scheme is a scoring method that can tell the importance of a word in a collection

of documents. It can be calculated as a simple multiplication:

tfidf = tf × idf (2.1)

Term frequency (tf) can be simply the frequency (number of occurences) of the word in the

document. The more common the word, the higher the term frequency will be.

On the other hand, words that occur in few documents, are probably richer in details that

could better characterize the document. The inverse document frequency (idf) spans from the

principle that a word that occurs in many documents is not relevant in differing each document

from each other. idf can be obtained by dividing the total number of documents N by the

number of documents ni containing the term, and then taking the logarithm of that quotient,

as expressed in Eq. (2.2).

idf = log
N

ni
(2.2)

By combining the Eqs. (2.1) and (2.2), the TF-IDF of word in a document can be expressed by

Eq. (2.3).

tfidfi = tf × log
N

ni
(2.3)

As [5] so succinctly explains, “tfidf assigns to a term, a weight in document that is:

1. highest when the term occurs many times within a small number of documents;

2. lower when the term occurs fewer times in a document, or occurs in many documents;

3. lowest when the term occurs in virtually all documents;”

There are several interesting variations of tfidf . In Figure 2.1 we showed an example of a the

binary representation and with Eq. (2.3) we presented tfidf in its most common form.

8



In [4], Kondachy M., suggests a normalized term frequency where “each individual word fre-

quency is divided by the total number of content words in the document”, Eq. (2.4), where w

is the number of occurrences of a given term in a document with a total of W tokens.

tfidfi =
w

W
× log

N

ni
(2.4)

Another common variation is presented in [6], which proposes “to use instead the logarithm of

the term frequency”, where wft,d is the word frequency of term t in document d:

wft,d =

 1 + log tft,d tft,d > 0

0 otherwise
(2.5)

Figure 2.2, extracted from [6], shows all the most commonly accepted variants of tfidf .

Figure 2.2: SMART notation for tfidf variants.

2.2.3 Similarity

Now that it has been established that documents are represented like vectors in a high dimen-

sionality space, via the bag-of-words model, how does one come to the conclusion that a training

data document and a test data document are similar?

According go [3], “a similarity function takes a pair of objects and produces a real value that is

a measure of the objects’ proximity. To do so, the function must be able to compare the internal

structure of the objects.”

In Text Mining, the most common measure is the cosine similarity:

Sim(xi, xj) = (x′i · x′j) =
∑
k

x′ik · x′jk (2.6)

Equation (2.6) is a dot product of two vectors, where x′ is a normalized vector x′ = x
|x| and

values can differ from -1 to 1.

9



2.3 Performance Metrics

In this section we take a look at the metrics used to determine how good or poorly a classifier

performs. Typically there are four key concepts: Accuracy, Precision, Recall and F-Measure.

Before the formulas are presented, it is important to grasp the statistical definitions that con-

stitute those formulas, within the scope of Twitter topic classification:

1. True Positive (TP): This means that a tweet belonging to a given topic, has been correctly

identified as belonging to that topic;

2. False Positive (FP): This means that a tweet that does not belong to a given topic, has

been incorrectly identified as belonging to that topic;

3. True Negative (TN): This means that a tweet that does not belong to a given topic, has

been correctly identified as not belonging to that topic;

4. False Negative (FN): This means that a tweet belonging to a given topic, has been incor-

rectly identified as not belonging to that topic.

With this in mind, the definition of the metrics are:

Accuracy =
#TP + #TN

#TP + #TN + #FP + #FN
(2.7)

Precision =
#TP

#TP + #FP
(2.8)

Recall =
#TP

#TP + #FN
(2.9)

F −Measure = 2× Precision×Recall
Precision+Recall

(2.10)

With accuracy, the whole of the data set is being evaluated on how often the classifier is correct

in its statement. For example, an 80% accuracy rate will mean that 80% of the time, the decision

of a topic belonging or not belonging is correct. This metric is typically not used because most

classifying methods (including ours) are good at detecting “True Negative” cases. In addition,

such cases will dominate the number of occurrences when comparison to the remaining “True

Positive”, “False Positive” and “False Negative”. As a consequence, accuracy will always be very

high (above 95%) and therefore unhelpful to determine how good an algorithm really performs.

Precision establishes just how correct is the method’s statement of a true case. An 80% precision

rate indicates that out of all the times that the method indicated a topic as being correctly

10



identified, 20% were actually incorrect. Precision can also be called the Positive Predictive

Value.

Immediately, there is a possibility of a system being accurate but not precise.

Recall, as defined by Eq. (2.9), is a measure of how good the process is at classifying positive

cases. An 80% recall rate means that in 20% of the times, the algorithm failed to identify a true

positive scenario. It is also known as Sensitivity within the scope of a binary classification test.

And finally, F-Measure can be interpreted as a weighted average of the precision and recall,

where the score reaches its best value at 1 and worst score at 0. Typically, it is the benchmark

metric to determine the overall performance of a classifier.

2.4 Classification Methods

We will now take a look a two very widely used examples of Categorization Methods. It is

important to remember that, as [4] mentions: “the results from the categorization method do

not solely depend on the algorithm alone. The term supervised learning is used to describe

text categorization”. This means that quality of the training data has a major influence on the

results.

In general, please keep in mind that most categorization algorithms follow four steps [3]:

1. Decide the categories that will be used to classify the instances;

2. Provide a training set for each of the categories;

3. Decide on the features that represent each of the instances;

4. Choose the algorithm to be used for the categorization;

The classifiers to be presented are the K-Nearest Neighbor (kNN) and the Support Vector

Machine (SVM). Yang and Liu, in [7], suggest that these are the two best algorithms to date,

and claim that SVM and kNN significantly outperform the other classifiers.

2.4.1 k-Nearest Neighbours

The kNN is an example-based classifier. This means it will not “build explicit declarative

representations of categories but instead rely on computing the similarity between the document

to be classified and the training documents” [3]. In this case, the training data is simply the

“storing of the representations of the training documents together with their category labels”.

In order for kNN to “decide whether a document d belongs to a category c, kNN checks whether

the k training documents most similar to d belong to c. If the answer is positive for a sufficiently

11



Figure 2.3: Example of the K Nearest Neighbour Algorithm

large proportion of them, a positive decision is made. The distance-weighted version of kNN is a

variation that weighs the contribution of each neighbour by its similarity to the test document”.

Please consider Figure 2.3, a two-dimensional example of how kNN works, where there are 3

different categories: blue, orange and green. The yellow dot represents the document to be

categorized. If k = 1 (smaller circle), the document will look for its closest neighbor and

determine that it belongs to the blue category, therefore, it will be classified as blue. However,

if k = 5, (larger circle), it will determine that 3 of its neighbors belong to the orange category

and 2 to the blue category. By a majority rule, the document will be classified as orange.

As one can deduce, an appropriate value of k is of the utmost importance. While k = 1 can

be too simplistic, as the decision is made according only to the nearest neighbor, a high value

of k can have too much noise in it and favor dominant categories. According to [4], “when the

training set is large and consists of many distinct categories, then a large k is more appropriate

(...) however, if the training collection is made up of documents from subtopics with some

overlap, then a small k is sufficient”.

This method seems to have reduced efficiency when performing on unbalanced data, i.e., where

the training examples are not evenly distribute among different classes and there is usually a

dominant class. According to [8] “when dealing with unbalanced data sets, this leads to either

trivial classifiers that completely ignore the minority class or classifiers with many small (specific)

disjuncts that tend to over fit the training example”.

The kNN is considered to be one of the best performing text classifiers, whose main drawback

12



is “the relatively high computational cost of classification - that is, for each test document, its

similarity to all of the training documents must be computed” [3]. In kNN, “the training is fast,

but classification is slow. Computing all the similarities between a document that has not been

categorized and a collection of documents, is slow” [4].

2.4.2 Support Vector Machine

A support vector machine (SVM) is a very fast and effective binary classifier. According to

[4],“every category has a separate classifier and documents are individually matched against

each category”. Given the vector space model in which this method operates, geometrically

speaking, [3] describes SVM as a “hyperplane in the feature space, separating the points that

represent the positive instances of the category from the points that represent the negative

instances. The classifying hyperplane is chosen during training as the unique hyperplane that

separates the known positive instances from the known negative instances with the maximal

margin”.

Please consider figure 2.4 as a two dimensional example of SVM. As one would expect, in this

scenario, the hyperplanes are lines.

Figure 2.4: Two dimensional Support Vector Machine

As one can see in figure 2.4, the hyperplane H1 does not separate the positive from the negative

instances. H2 does, but it does not guarantee the maximum distance between them. Finally,

H3 offers the necessary solution.

“It is interesting to note that SVM hyperplanes are fully determined by a relatively small subset

of the training instances, which are called the support vectors” [3].

13



Figure 2.5: Two dimensional Support Vector Machine - Linear and Non-Linear Kernels

Further detail into this algorithm can be obtained from Ben-Hur and Weston’s work in [9]:

“SVM’s belong to the general category of kernel methods. A kernel method is an algorithm that

depends on the data only through dot-products. When this is the case, the dot product can be

replaced by a kernel function which computes a dot product in some possibly high dimensional

feature space.”. Figure 2.4 is an example of a linear kernel. Figure 2.5 compares the behavior

of different kernel functions: linear, polynomial and gaussian:

The SVM method also has another “set of parameters called hyper-parameters: The soft margin

constant, C, and any parameters the kernel function may depend on (width of a Gaussian kernel

or degree of a polynomial kernel).”,[9].

As far as hyper-parameters are concerned, it is import to understand “the soft-margin constant,

whose role is illustrated in Figure 2.6. For a large value of C a large penalty is assigned to

errors/margin errors. This is seen in the left panel of Figure 2.6, where the two points closest

to the hyperplane affect its orientation, resulting in a hyper-plane that comes close to several

other data points. When C is decreased (right panel of the Figure 2.6), those points become

margin errors; the hyperplane’s orientation is changed, providing a much larger margin for the

rest of the data.”

To sum up, and according to [4], “SVM has at least three major differences with the previous

categorization method:

1. All training documents are not used. Only documents near the classification border are

used to build the SVM function;

2. An SVM can construct an irregular border to separate positive and negative training

documents;

3. All features (unique words) from training documents are not necessary for classification;”

14



Figure 2.6: Two dimensional Support Vector Machine - The effect of the soft margin

Much like kNN, SVM has finds problems with unbalanced data sets. In [10], a point is made

that since “SVM’s try to minimize total error, they are inherently biased toward the majority

concept. In the simplest case, a two-class space is linearly separated by an ideal separation

line in the neighborhood of the majority concept. In this case, it might occur that the support

vectors representing the minority concept are far away from this ideal line, and as a result, will

contribute less to the final hypothesis. Moreover, if there is a lack of data representing the

minority concept, there could be an imbalance of representative support vectors that can also

degrade performance”.

Despite that fact, “SVM methods for text categorization have attracted some attention since

they are currently the most accurate classifiers” [4].

2.5 Topic Classification vs Topic Detection

During the development of this thesis, we came upon a discussion that Topic Classification and

Topic Detection, although similar, may very well be two different concepts.

Topic Classification, as a concept, definitely fits into what we have presented thus far in this

chapter. Given a set of predetermined categories, a topic classifier will attempt to determine

whether a tweet belongs to one or more of such categories. Typically, this set of categories is

short and generic, ranging from things such as politics to sports and the documents will often

belong to at least one of those categories. It is very rare that a document does not fit into any

topic.

In Topic Detection however, we feel there is a more objective and particular approach, where

an attempt is made to determine the topic of the document, given a predetermined large set

15



of very distinct topics. This stems from Twitter’s own nature that at any given time, millions

of users are talking about millions of different subjects with millions of different hashtags. In

addition, the topics are so unique amongst themselves that there is a high probability that a

tweet without a hashtag may very well not belong to any of the current trends.

With this in mind, we believe that this work falls into the latter concept.

2.6 Twitter Data Mining

In this section several studies that tackle different issues with mining data from Twitter are

presented.

Most ideas that have come forth, look at Twitter as a way to know what is going on in the

world. For instance, in [11], a study is made in order to “retrieve in real-time the most emergent

topics expressed by the community”. Let us consider the examples that the authors provide in

figures 2.7 and 2.8.

Figure 2.7: Statistical use of the term “computer” in Twitter from Oct.2009 to Jan.2010

Figure 2.8: Statistical use of the term “earthquake” in Twitter from Oct.2009 to Jan.2010

16



As one can see, the figures show that the word “computer” is more frequent than “earthquake”

through an extended period of time. However, the peek in figure 2.8 makes the term “earth-

quake” part of an emergent topic, due to the catastrophe that occurred in Haiti on the 12th,

January, 2010. This is a very good indicator of how Twitter is a window for important world

events.

In [12], Mathioudakis and Koudas develop “a system that performs trend detection over the

Twitter stream. The system identifies emerging topics (i.e. trends) on Twitter in real time

and provides meaningful analytics that synthesize an accurate description of each topic”. Much

like [11], TwitterMonitor first identifies bursty keywords, i.e. “keywords that suddenly appear

in tweets at an unusually high rate”. It then groups bursty keywords into trends or, in other

words, identifies a trend as a set of bursty keywords that occur frequently together in tweets.

“After a trend is identified, TwitterMonitor extracts additional information from the tweets that

belong to the trend, aiming to discover interesting aspects of it.” [12].

The studies performed in [13] and [14] also provide interesting solutions into the problem of

detecting emerging topics. However, in our work, we already assume the existence of trending

topics and aim at efficient detecting tweets that are related to them, despite not being explicitly

marked as so.

In [15], Weng and Lee take event detection one step further and attempt to make a distinction

between relevant and irrelevant topics. They attempt to tackle the problem of tweets reporting

big real life events being usually overwhelmed by high flood of trivial ones. “About 40% of all

the tweets are pointless ’babbles’ like ’have to get something from the minimart downstairs’ ”

[15]. They propose EDCoW (Event Detection with Clustering of Wavelet-based Signals) which

“builds signals for individual words which captures only the bursts in the words appearance.(...)

It then filters away the trivial words by looking at their corresponding signal auto-correlations.

EDCoW then measures the cross correlation between signals. Next, it detects the events by

clustering signals together by modularity-based graph partitioning (...) To differentiate the big

events from trivial ones, EDCoW also quantifies the events’ significance, which depends on two

factors, namely the number of words and the cross correlation among the words relating to the

event.”

Table 2.1 shows all the relevant topics detected by EDCow in June of 2010. ε represents the

relevance of the topic and according to [15], an event is declared relevant when ε > 0.1.

Unsurprisingly, most topics relate to the Football World Cup that took place in South Africa

during that month.

In [16], the authors attempt to “classify Twitter Trending Topics into 18 categories such as:

17



Table 2.1: All the Events Detected by EDCoW in June 2010

sports, politics, technology, etc”. Based on previously discussion regarding Topic Classification

vs Topic Detection, one can claim that this study falls into the Topic Classification.

Figure 2.9 shows the accuracy of several text-based classifiers namely the Naive Bayes Multino-

mial(NBM), Naive Bayes (NB) and Support Vector Machines (SVM-L) with linear kernel. “TD

represents the trend definition. Model(x,y) represents classifier model used to classify topics,

with x number of tweets per topic and y top frequent terms” [16].

Fig 2.10 presents the comparison of classification accuracy using different classifiers for network-

based classification. Clearly, C5.0 decision tree classifier gives best classification accuracy

(70.96%) followed by kNN (63.28%), SVM(54.349%) and Logistic Regression (53.457%).

In [17], the goal “is to demonstrate how to use Twitter to automatically obtain breaking news

from the tweets posted by Twitter users”. In 2009, when Michael Jackson died, “the first tweet

was posted 20 minutes after the 911 call, which was almost an hour before the conventional

news media first reported on his condition”. Figure 2.11 shows the relative increase in samples

of overall tweet activity regarding that subject:

In [18], Cheong M. and Lee V. “attempt to dissect the anatomy of a trending topic to find

out what makes it tick”. Specifically, they “select at random 4 topics which appear in the

top 3 category of the trending topics list and 2 control topics (which are non-trending), gather

18



Figure 2.9: Text-based accuracy comparison over different classification techniques

Figure 2.10: Network-based accuracy comparison over different classification techniques

19



Figure 2.11: Traffic in tweets per hour, relating to Michael Jackson’s death

information about the posts mentioning the topic and (...) analyse the data to investigate any

patterns that occur in trending topics”. The study categorizes users as being either Personal

(sharing information and messaging friends), Group (fan clubs and other non-profit networks),

Aggregator (news agencies), Satire and Marketing.

Regardless of the fact that the 2 control topics were “Coffee” and “revolver head”, in Figure

2.12 it stands out that the “majority of Twitter users participating in chatter are users who talk

about their personal life and use Twitter as a form of communication and social networking”

[18].

Having established how Twitter portraits current events, this thesis will look to further engage

in the theme of Tweet Topic Detection.

20



Figure 2.12: Topics by user Tweeting habits

21



22



Chapter 3

Twitter Data

Twitter provides an API for developers who wish to either explore its content or functionalities.

This is divided into two separate API’s: the REST API and the Streaming API.

The REST API provides simple interfaces for most Twitter functionality. With it, one can

develop applications that will allow one to do pretty much anything a normal user can: post, re-

tweet, message, follow, etc... This is usually a starting place for developers looking to incorporate

Twitter into their apps.

The Streaming API gives developers low latency access to Twitter’s global stream of tweet data.

It gives access to literally million of user tweets. It is often used by developers with intentions

similar to ours, who are in need of a large amount of data to work with.

In the scope of this thesis, we used one feature from each.

3.1 Public Streams

The following streams offer samples of the public data flowing through Twitter. Once applica-

tions establish a connection to a streaming endpoint, they are delivered a feed of Tweets.

It is important to note that, by opening the stream connection, one does not get all the tweets

posted at that time. According to [19], with firehose access, users can get 1 % of the actual

public tweets. Nonetheless, with this method, we obtained nearly two million tweets per day

from the 18th of May to the 21st of May, 2013.

During the execution of this work, the language parameter became available to filter stream

tweets [20]. This was promising given the intention to extract only English, Portuguese and

Spanish tweets. Despite this fact, it came to our attention that re-tweeted posts often had an

empty language information. Since re-tweeting is a big part of spreading a topic around, the

language filter was not user and the dataset will contain tweets in languages other than those

23



mentioned above.

3.2 Trending Topics

The “GET trends/weekly” method returns the top trending topics for each day in a given week.

It was used to get the list for the 18th of May, 2013, as it can be seen in the Appendixes. This

method belongs to the REST API, version 1.0.

As of August of 2013, the method has been deprecated and replaced in version 1.1 by ”GET

Trends/place” where one can get the 10 top trending topics filtered by geographical location, at

the time of method execution. Should a user want the worldwide top trends, the place parameter

value should be “1”.

With the extracted list, we used only the hashtagged topics to see how often they occurred in

the two million tweets that we streamed with the Stream API, for the 18th of May, 2013. Out

of the nearly two million (1950596) documents sample, approximately 11000 have the hashtags

identified as being a part of the top trending topics. In spite of this fact, an overall hashtag

counter revealed that 318710 tweets had at least one #, for a 16.3% value which validates Mazzia

and Juett’s claim in [2], that only 15.9% of tweets are hashtagged.

The low value of tweets containing the top trending topics can be explained by Twitter own

view on what constitutes a trending topic. According to [21], “Twitter Trends are automatically

generated by an algorithm that attempts to identify topics that are being talked about more

right now than they were previously. The Trends list is designed to help people discover the

most breaking news from across the world, in real-time. The Trends list captures the hottest

emerging topics, not just what is most popular. Put another way, Twitter favors novelty over

popularity”.

Consider once again the example of #michaeljackson in figure 2.11. It probably had more hits

per day than a topic such as #nowplaying which refers to what song a user is listening at the

moment. However, it was not considered to be trending until his death, when in a short period

of time, more than ever before that hashtag was used. “Sometimes, popular terms do not make

the Trends list because the velocity of conversation is not increasing quickly enough, relative to

the baseline level of conversation happening on an average day” [21].

This definition, alongside the information that only 1% of the tweets can be streamed, explains

a seemingly low presence of the top trending topics of the 18th of May.

24



Chapter 4

Text Preprocessing

One of the most important tasks in extracting information from text, is how the text itself

is handled and represented. In this chapter, we will explain some of the most common text

preprocessing techniques that were implemented in our algorithm and discuss how they will

apply to our problem.

In this thesis, the tweets are not represented in a typical bag-of-words fashion, figure 2.1. As

Chapter 5 will show, we are not looking to group the tweets in clusters of categories, but instead,

we aim to produce a similarity score. As a consequence, any given tweet can be represented as

a vector of strings, where each string is a called a token. This process is known as Tokenization

and it is broadly defined as the process of breaking a stream of text into words, phrases or

symbols.

Due to Twitter’s unique features, when tokenizing, very special care is taken into assuring that

hashtags (e.g. #derek), usernames (e.g. @rickygervais1 ) and web links (e.g. http://www.twitter.com)

are kept intact. Also, any punctuation is removed, as detailed by the code in Figure 4.1.

The Tokenization process was accomplished via Python’s Regex incorporation into NLTK’s To-

kenizer function:

The code above ensures that any occurrence of any token starting with “www” or “http” is

kept intact (web links). The same goes for tokens starting with one or more occurrences of the

characters “@” and “#” (usernames and hashtags).

regexp_tokenize(text , pattern=

r’(www )+([.\/]+\w+)*|( http )+([.:\/]+\w+)*|\@+\w+|\w+|#+\w*’)

Figure 4.1: Regex Expression for Tokenizing Method

25



Let us take another look at Ricky Gervais’ tweet from Chapter 1.

Dear #Australia! Brand new episode of #Derek on #ABC1 tonight at 10pm! RT if you’re going

to watch! pic.twitter.com/dxVf72tn80 Cheers :)

In our algorithm, this tweet would translate to:

[“Dear”, “#Australia”, “Brand”, “new”, “episode”, “of”, “#Derek”, “on”, “#ABC1”, “tonight”,

“at”, “10pm”, “RT”, “if”, “you”, “re”, “going”, “to”, “watch”,

“pic.twitter.com/dxVf72tn80”, “Cheers”]

Instinctively, we can spot many opportunities to make this model more meaningful. For instance,

all of the words should be lower cased to ensure when comparing this tweet to a given fingerprint,

the words “Cheers” and “cheers” can be identified as the same.

From this point forward, more complex techniques come into play.

4.1 Stopwords

When looking at a random text, some words will pop up very frequently. Words such as “the”

or “and” offer literally no value in terms of deciphering what a text is about. For that reason,

this kind of words are considered stopwords.

According to [5], “the several hundred most common words in English (...) are often removed

from documents before any attempt to classify them”. It stands to reason that this logic is valid

regardless of the idiom.

For the purpose of this thesis, only English, Spanish and Portuguese tweets were taken into

account. The full list of stopwords considered, can be found in Appendix A, and it is taken from

[22], the Natural Language Toolkit.

With that mind, let us take another look at the list of tokens we have previously extracted from

Ricky Gervais’ tweet, with the lower case rule in action, and remove some stopwords.

[“dear”, “#australia”, “brand”, “new”, “episode”, “#derek”, “#abc1”, “tonight”, “10pm”,

“rt”, “re”, “going”, “watch”, “pic.twitter.com/dxVf72tn80”, “cheers”]

You can very quickly tell which words were removed:

26



[“of”, “on”, “at”, “if”, “you”, “to”]

As one can see, by removing the stopwords, the most import words remain and some of the

noise has been removed. Not only have we removed words that provided no value to detecting

the topic of this tweet, but we also reduced the number of words that classifying algorithms will

have to compute, which is ensures faster processing.

4.2 Short Length Words

In addition to stopwords, one can argue that some words are so short that they provide little

value into disclosing a tweet’s topic. Words such as the colloquial “hi” or even “bye” could,

theoretically, be removed from the corpus without damaging any algorithm’s chance of classifying

it. As a consequence, the list of tokens that comprises a tweet will be shorter and also improve

the algorithm’s processing time. In the context of a bag-of-words representation, Figure 2.1,

this process is known as Dimensionality Reduction.

But there are risks to this approach. Namely, some very famous acronyms such as “USA” and

“UK” could be overlooked, despite being helpful in adding information to the tweet. Let us,

once more, look at our representation Ricky’s tweet, after the removal of stopwords:

[“dear”, “#australia”, “brand”, “new”, “episode”, “#derek”, “#abc1”, “tonight”, “10pm“,

“rt”, “re”, “going”, “watch”, “pic.twitter.com/dxVf72tn80”, “cheers”]

Now, let us indulge the argument made about removing short words, and remove all words with

4 or fewer characters. The remaining tokens would be:

[“#australia”, “brand”, “episode”, “#derek”, “#abc1”, “tonight”, “going”, “watch”,

“pic.twitter.com/dxVf72tn80”, “cheers”]

You can very quickly tell which words were removed:

[“dear”, “new”, “re”, “rt”, “10pm”]

The tweet remains easily classifiable while being easier to process, due to reduced number of

features.

In this thesis, the length of a word is parameter taken into account while executing, and results

27



will be compared based of the removal of shorter than j-sized words from the corpus. During

our experiments, j can take any value from 1 to 4 and conclusions will be drawn from the “Test

and Results” chapter.

4.3 Stemming

Stemming is the name given to the process of reducing words to their root (stem) form. The

stem form is achieved after the “prefix and suffix have been removed” [4]. For instance, the stem

form of the word “running” is “run”. Consider the example in [4], with the root word “prevent”:

“variants of this root word are achieved by adding suffixes to create prevents, preventing and

prevention.”

By incorporating this technique into the text preprocessing, it further achieves the goal of

reducing the dimensionality of the document’s representation, while keeping the meaning intact.

Although prefixes such as “un-” give opposite significance to a word, the purpose of it its kept by

the stem word. Both “tie” and “untie” relate to either the action or substantive “tie”. Although

available in several languages, it is the English language that stands out with Porter’s Stemmer

[23]. According to [24], it “became the de-facto standard for word stemming. This algorithm

works by applying a set of different rules, yielding to the word stem after 5 iterations (so-called

‘steps’)”.

The Stemming mechanism is one of the parameters used in this thesis. The impact of this

mechanism on the results will be taken into account on the “Tests and Results” chapter.

4.4 Word Spell Correction

As Twitter grows, it also creates its own lingo. User often use acronym such as “LOL’ (Laughing

Out Loud)’ and “OMG” (Oh My God), but they also mistype a lot. It can be done unconsciously

or purposefully. For instance, in order to enhance a sentiment about something:

I looooooooooooove Ricky’s new show #derek

As a consequence, this thesis took under consideration the use of a word corrector, during the

text preprocessing phase, by Carvalho J. and Coheur L. in [25].

According to [25],the algorithm, named UWS, “was developed with the goal of automatic de-

tection and correction of typographical and other word errors in unedited corpus data when

creating word lists”.

28



It scores words in similarity from 0 to 1, where “0.68 was considered as the limit over which false

positives and false negatives are highly unlikely,i.e., where both precision and recall are close to

1” [25].

It stands out as being very precise and fast, with precision results of 95.3%, a recall of 82% and

F-Measure of 88.3%. In terms of quickness, it is approximately 285% faster than the Damerau-

Levenshtein approach,[26], when comparing similarity of a word with 5 characters in length,

with a dictionary of 109583 words (it took 2 seconds).

Ultimately, it was not used because, as quick and efficient it may be, when streaming millions

of tweets, it would delay the process just enough so that our proposed method would loose its

appeal to possibly become a near real-time classifier.

4.5 Twitter Username

The owner of the tweet can provide valuable information towards discovering the theme of it.

For example, it his likely that music related personalities, will tweet about music trends quite

often.

Although the author of the tweet is not technically a part of its content, it is additional metadata

that can help shed a light on the topic under discussion. As a consequence, in this thesis, the

author of the tweet is a part of the tweet features.

Despite being clear that a user that often posts about the same subject can be helpful, a user

that posts often about several topics, may be damaging to make hashtags distinguishable. This

is solved using Inverse Document Frequency, IDF, as explained in Chapter 5.

29



30



Chapter 5

The Fuzzy Fingerprint Algorithm

The proposed method is derived from Nuno Homem’s and João Paulo Carvalho’s work in [27]. In

that thesis, the researchers tackle the problem of text authorship and use the crime scene finger-

print analogy to claim that a given text has its authors writing style embedded in it. Therefore,

having the fingerprint been previously defined, it should be entirely possible to identify if, a text

whose author is unknown, has a known author’s fingerprint on it.

In this chapter, we will detail on how the original method works and how it adapts to the

Twitter reality, thus establishing that given a topic’s fingerprint, a measure of similarity can be

calculated between topic and tweet.

5.1 Original Method

According to [27], “the main concept behind this algorithm is that authors have a stable enough

behavior that allows a set of features to be extracted, fuzzified and then compared. The most

frequent words in the texts of a single author present the required stability”. The “set of words

to consider in the fingerprint should be large enough to allow a comprehensive sample of the

author style and vocabulary”.However, to be useful, the fingerprint should comply with some

basic criteria:

1. Include a minimal set of features that describe the author in a compact format.

2. Allow for update operations whenever new information (texts) on the author is available.

3. Allow for a fast comparison process once a new text needs to be identified.

4. Scalability, i.e., performance should not degrade significantly when the number of texts or

authors in the pool increases.

31



5. Flexibility, i.e., should allow new authors to be included in the process, whenever infor-

mation is available.

In order to complete the above mentioned step 1, “an approximated algorithm is used for this

purpose since classical exact top-k algorithms are inefficient and require the full list of distinct

elements to be kept (storing 100000 words per author is inefficient if only the top-1000 are

needed.) The Filtered Space-Saving algorithm is used for this purpose since it provides a fast

and compact answer to the top-k problem”.

The algorithm itself works like this:

1. Gather the top-k word frequencies in all known texts of each known author;

2. Once the top-k word frequencies are available, the fingerprint is constructed by applying

a fuzzifying function to the word frequencies;

3. Perform the same calculations for the text being identified and then to compare this

text fuzzy fingerprint with all the available author fuzzy fingerprints. The most similar

fingerprint is chosen and the text is assigned to the fingerprint author;

5.1.1 The Filtered Space-Saving Algorithm

According to [27], “to allow the use of authorship identification techniques in near real time and

for a large number of potential authors and documents, a key issue is to be able to extract the

relevant features using an efficient algorithm with reduced memory usage. In this case, features

are the most frequent words in the author’s texts. The choice was to use an approximate top-k

algorithm capable of generating good quality estimates using a reduced memory footprint”.

The Filtered Space-Saving (FSS) algorithm uses “a bitmap counter with h cells, each containing

two values, αi and ci, standing for the error and the number of monitored elements in cell i.

An hash function that transforms the input values (words) into an uniformly distributed integer

range is used to obtain h(x). The hashed value h(x) is then used to increment the corresponding

cell on the bitmap counter. Initially all values of αi and ci are set to 0” [27].

There is a second a list of monitored elements A with size m. The list is initially empty.

Homem N. and Carvalho J. say that “each element contains three parts; the value itself vj , the

estimate count fj and the associated error ej . The minimum required value to be included in

the monitored list is always the minimum of the estimate counts, µ = min{fj}. While the list

has free elements, the minimum is set to 0.”

But how does the algorithm work? According to [27] “when a new word is received, its hash

is calculated and the bitmap counter is checked. If there are already monitored elements with

32



Figure 5.1: Featured Space-Saving Algorithm Diagram

that same hash (ci > 0) the list is searched to see if this particular element is already there. If

the element is in the list then the estimate count fj is incremented. If the element is not in the

list then it is checked to see if it should be added. A new element will be inserted into the list

if αi + 1 > µ. If the element is not monitored then αi is incremented.”

Finally, “if the element is included in the monitored list, then ci is incremented and set fj = αi+1

and ej = αi. If the list has exceeded its maximum allowed size, then the element with the lower

fj is selected.The selected element is removed from the list, the corresponding bitmap counter

cell is updated, cj is decreased and αi is set with the maximum error incurred for that position

in a single element” [27].

5.1.2 Membership Functions

One of the most important aspects in this method, is the fuzzifying function and “the chosen

approach is to assign a membership value to each word in the set based only on the order in the

list”. In this case, the order of the frequency was chosen. The more frequent words will have a

higher membership value.

The authors present three different attribution functions for each element i of the top-k list:

µ(i) =
k − i
k

(5.1)

33



Figure 5.2: Fuzzyfing functions

µab(i) =

 1− (1− b) i
kb i < a

a(1− i−a
k−a

)

k i ≥ a
(5.2)

µerfc(i) = 1− erf(
2i

k
) (5.3)

where erf is the Gauss error function. Figure 5.2 presents the used functions.

Consider an ordered k-sized vector containing the most frequent words of a given authors. This

is his fingerprint. The more frequent words are weighed to be more important by attaining a

higher value through either 5.1, 5.2 or 5.3. The first word (i=0 ) has a weight of 1.0 on any

fingerprint, regardless of the fuzzyfing function used. The second word (i=1 ) will have a lower

value, and it will be different depending on the which function was used. And so on, and so on.

5.1.3 Similarity Score

So how do the authors propose to find the author of a given unknown text D? “One starts by

computing the size-k fingerprint of D, Φ(D). Then one compares the fingerprint of D with the

fingerprints Φ(k) of all authors present in the fingerprint library. Authorship is attributed to

the author j that has the most similar fingerprint to Φ(D). Fingerprint similarity is calculated

using:”

34



simΦD,J =
∑ min(µv(Φ(D)), µv(Φ(j))

k
(5.4)

where µvΦ(x) is the membership value associated with the rank of word v in fingerprint x.

5.2 Twitter Topic Fuzzy Fingerprints

Our method, while similar in intention and form, differs in a few crucial steps.

First it is important to establish the parallel between the context of author ownership and

Tweet Topic Detection. Instead of author fingerprints, in this work we are looking to obtain

the fingerprints of hashtagged Twitter topics (#). Once we have a topics fingerprint library,

each unclassified tweet can be processed and compared to the fingerprints existing in the topic

library.

Secondly, different criteria were used in selecting the top-k words for the fingerprint. While [27]

uses word frequency as the main feature to create the top-k list, here we use an adaptation of

an Inverse Document Frequency technique, aiming reducing the importance of frequent terms

that are common across several topics, such as “follow”, “RT” and “like”.

Lastly, the similarity score differs from the original, based on the fact that tweets are, by design,

very short texts, while the original Fuzzy Fingerprint method was devised to classify much longer

texts (newspaper articles, books, etc. ranging from thousands to millions of characters). Here

we propose the use of a normalized score with values between 0 and 1, where the lowest score

indicates that the tweet in question is in no way similar to the topic fingerprint, and the highest

value indicates that the tweet is totally similar. In addition, the Filtered Space-Saving algorithm

was not included, although it remains a feature of interest for future work.

5.2.1 Building the FingerPrint

This step is mostly similar to the original. The method will go over the training set, which,

in this situation, are tweets containing the Trending Topics of the day. For each, tweet it will

acknowledge the existence of the # and add that word to a hash table alongside with its counter

of occurrences.

Consider Table 5.1 as an example of the end result that algorithm in Figure 5.3 would produce,

after going through several tweets of some previously mentioned topics:

The main difference between the original method and ours, is that due to the small size of each

tweet, its words should be as unique as possible in order to make the fingerprints distinguishable

amongst the various topics. Therefore, in addition to counting each word occurrence, we also

35



createDataStructure(trainingSet ,topTrends)

trendFP = Set of topicFingerprints ()

for tweet in trainingSet

tokens = tokenize(tweet)

kw = words in tokens and topTrends

for k in kw

for t in tokens

if t not in topTrends

trendFP{k}[t]++

Figure 5.3: Pseudo-Code to explain data structure used

account for of its Inverse Topic Frequency (ITF), an adaptation of the Inverse Document Fre-

quency in Eq. (2.2), where N becomes the topic fingerprint library size (i.e., the total number

of topics), and ni becomes the number of #topics where the word is present.

Table 5.1 shows an example of a possible top-k output produced by the algorithm Figure 5.3 for

a fingerprint size k = 3, after going through a small training set. By multiplying the occurrences

of each word per topic with its ITF, we obtain the third column of table 5.1.

Table 5.1: Fingerprint hash table before and after ITF

Key Feature Counter Feature ITF

dead 4 dead 1.90

#michaeljackson rip 2 rip 0.95

sing 1 sing 0.48

earthquake 10 earthquake 4.77

#haiti rip 5 rip 1.43

help 1 help 0.17

show 8 show 3.81

#derek help 3 australia 0.95

australia 2 help 0.52

As expected, the term “help”, which was the only one that occurred in more than one fingerprint,

got dropped to last position in the ranking of fingerprint words for the topic “#derek”.

5.2.2 Membership Functions

Now that we already have the fingerprint for a top-k with ITF, we take the same approach

as the original method, and use a membership function to calculate the weight of each word,

according to its position in the ranking.

36



In [27], results showed that µab, as described by Eq. (5.2), provided the best results. Through

extensive testing, we reached the same conclusion. In addition, it is also computationally simpler

which provides slightly faster results, a feature of great importance in the scope of this thesis.

5.2.3 Tweet-Topic Similarity Score

Once the fingerprints have been established, and each membership word value given according

to Eq. (5.2), every tweet in the test data set is used to calculate a similarity score to every

fingerprint.

for tweet in testSet:

for fp in fingerprint:

value = similarity(tweet ,fp)

Figure 5.4: Pseudo-Code to explain the similarity calculation

In the original method, Eq. (5.2), in order to check the authorship of a given document, a

fingerprint would be built for the document (using the procedure described above), and then

the document fingerprint would be compared with each fingerprint present in the library.

Within the Twitter context, such approach would not work due to the very small number of

words contained in one tweet - it simply does not make sense to count the number of individual

word occurrences. Therefore we developed a Tweet-Topic Similarity Score (T2S2) that tests

how much a tweet fits to a given topic. The T2S2 function, Eq. (5.5), provides a normalized

value ranging between 0 and 1, that takes into account the size of the (preprocessed) tweet (i.e.,

its number of features).

T2S2(Φ, T ) =

∑
v
µΦ(v) : v ∈ (Φ ∩ T )

j∑
i=0

µΦ(wi)

(5.5)

In Eq. (5.5) Φ is the #topic fingerprint, T is the set of words of the (preprocessed) tweet, µΦ(v)

is the membership degree of word v in the topic fingerprint, and j is the is the number of features

of the tweet.

Essentially, T2S2 divides the sum of the membership values µΦ(v) of every word v that is

common between the tweet and the #topic fingerprint, by the sum of the top j membership

values in µΦ(wi) where w ∈ (Φ).

Equation 5.5 will tend to 1.0 when most to all features of the tweet belong to the top words

of the fingerprint, and tend to 0.0 when none or very few features of the tweet belong to the

bottom words of the fingerprint.

37



Let us consider Table 5.1 fingerprint for the topic “#derek”. Using the function from Eq. (5.2),

it’s membership values for a k = 3 sized fingerprint, will be {“show”, 1.000; “australia”, 0.1667;

“help”, 0.083}.

Now consider the following example of an uncategorized tweet on the subject:

I love Ricky’s show

Which, after being tokenized and preprocessed, would translate into the following vector of

words {“love”, “ricky”, “show”}. The only word in the tweet that belongs to the fingerprint is

“show”, and it has a membership value of 1.0. The calculation made would be:

T2S2 =
1.000

1.000 + 0.167 + 0.083
= 0.800 (5.6)

That tweet has an T2S2= 0.800 similarity to the topic #derek. Which, if one thinks about it,

is a pretty good value. After all, this is a short tweet that talks about someone’s love one of

Ricky’s show. But which show? The Office? Extras? Derek?

On the other hand, other short tweets such as “I love Jerry’s show” would also score the same

and not belong to #derek. This is ultimately a small example with few features and a poor

fingerprint. The next chapter will shed some more light on the advantages and disadvantages

of this approach.

Also in the next chapter, we will look at results with different threshold T2S2 values for what

is determined to be a tweet belonging to a certain top trend. These values will range from 0.5

to 0.05.

To sum up, Eq. (5.5) will:

• tend to 1.0 when most to all features of the tweet belong to the top words of the fingerprint;

• tend to 0.0 when fewer to none features of the tweet belong to the bottom words of the

fingerprint.

38



Chapter 6

Tests and Results

In this chapter, we will present results on the tests made to the Twitter Topic Fuzzy Fingerprints

method.

Using the metrics presented in Chapter 2, we will determine how good the algorithm is and

explain the features of three distinct datasets. Results will be provided with different parameter

settings (scenarios) and conclusions will be drawn on which conditions are more beneficial to

this approach.

6.1 Parameters

Several testing scenarios were put in place, in order to find the algorithms’ optimal performance

setting. For every test below, these are the parameter that were put into play:

1. k, is the size of the fingerprint. It determines how many of its the most important words

are used to compare with the tweets features. Several increasing values were taken into to

account, in order to determine whether a bigger k value would provide better results;

2. stopwords. For each scenario, the results provided were measured with and without the

removal of stopwords. This aims to ascertain the true impact of the removal of stopwords;

3. stemming. For each scenario, the option to return words in their stem form can be either

turned on or off. With this parameter, we aim to determine the impact of this preprocessing

technique towards getting better results.

4. minimum j sized words. For each scenario, different values of j were considered as being

the minimum size of the words to feature in the tweets list of terms. The purpose of this

variable, is to test how the removal of small words may help keep richer tokens and get

better results;

39



5. threshold value. It represents the T2S2 value from which our method will declare that a

certain tweet belongs to a given trend. For the purpose of this thesis, values of 0.5, 0.15,

0.10 and 0.05 were tested.

6.2 Data Set I

The first data set used to test the Twitter Topic Fuzzy Fingerprints, was constructed from the

tweets streamed from the 18th of May to 21st of May, 2013. A brief glimpse of this data has

been given in Chapter 3.

6.2.1 Training Set

The Training Data Set consists of approximately 21000 tweets containing the hashtag for 21 im-

partially chosen topics of interest out of the top trends of the 18th of May, 2013. Approximately

4% of which are Portuguese, 35% are Spanish, 60% are English and 1% are in other languages.

In addition to the content of the tweet itself, the author’s username is also included into the list

of features of each tweet.

Please consult Appendix A, Table A.1, to analyze the distribution of top trend hashtags across

these tweets. As one can surely see, the distribution of tweets per topic is uneven. While 7959

of those tweets contain the trend #nowplaying (nearly 35%) , #mtvonedirection only appears

in 145 tweets and #5hfridayquestions even shows up only once.

This makes for what is known as an unbalanced dataset, where the categories do not have the

same number of sample documents. Additionally, one single category can even dominate the

training set in such fashion, that some classifiers may incorrectly categorize most of the test set

as that being a part of that one category.

6.2.2 Tests

The Test Data Set consists of 585 tweets that do not contain any of the top trending hashtags,

although they may contain others. Each tweet was impartially annotated to belong to one of

the 21 chosen top trends. Its distribution can be find in Appendix A, Table A.2.

Finding tweets that clearly belonged to the main list of hashtags was a challenge, given how few

we came across. This speaks to the difference between Topic Classification and Topic Detection,

that was introduced in Chapter 2.

40



Table 6.1: Results for Data Set I - no stemming and no stopword removal

Threshold 0.5 Threshold 0.15 Threshold 0.10 Threshold 0.05

j k Pre Rec F-Mea Pre Rec F-Mea Pre Rec F-Mea Pre Rec F-Mea

1 10 0.908 0.270 0.416 0.662 0.754 0.705 0.645 0.768 0.701 0.591 0.947 0.728

1 15 0.955 0.217 0.353 0.654 0.773 0.708 0.645 0.816 0.720 0.587 0.950 0.726

1 20 0.979 0.164 0.280 0.653 0.790 0.715 0.633 0.830 0.718 0.604 0.948 0.738

1 25 0.968 0.105 0.189 0.647 0.799 0.715 0.630 0.881 0.735 0.575 0.952 0.717

1 30 0.962 0.086 0.158 0.661 0.800 0.724 0.628 0.928 0.749 0.551 0.957 0.699

1 50 0.900 0.031 0.060 0.688 0.788 0.735 0.609 0.943 0.740 0.525 0.967 0.680

1 100 0.833 0.017 0.034 0.700 0.714 0.707 0.626 0.923 0.746 0.490 0.988 0.655

1 250 0.769 0.017 0.034 0.673 0.795 0.729 0.570 0.945 0.711 0.407 0.993 0.578

2 10 0.913 0.270 0.417 0.735 0.754 0.744 0.706 0.771 0.737 0.619 0.948 0.749

2 15 0.954 0.213 0.349 0.717 0.776 0.745 0.700 0.819 0.755 0.611 0.952 0.744

2 20 0.962 0.176 0.297 0.713 0.792 0.750 0.682 0.835 0.751 0.640 0.952 0.765

2 25 0.958 0.119 0.211 0.699 0.799 0.745 0.680 0.883 0.769 0.595 0.952 0.732

2 30 0.955 0.110 0.198 0.708 0.804 0.753 0.672 0.933 0.781 0.584 0.959 0.726

2 50 0.920 0.040 0.076 0.721 0.793 0.756 0.637 0.950 0.762 0.547 0.969 0.699

2 100 0.842 0.028 0.053 0.733 0.737 0.735 0.653 0.928 0.767 0.507 0.991 0.671

2 250 0.826 0.033 0.063 0.691 0.823 0.751 0.585 0.952 0.725 0.411 0.995 0.581

3 10 0.906 0.267 0.412 0.736 0.745 0.741 0.741 0.769 0.755 0.687 0.947 0.796

3 15 0.958 0.238 0.381 0.742 0.778 0.760 0.748 0.816 0.780 0.682 0.952 0.795

3 20 0.954 0.213 0.349 0.743 0.802 0.772 0.756 0.928 0.833 0.705 0.952 0.810

3 25 0.950 0.165 0.282 0.747 0.854 0.797 0.746 0.936 0.831 0.679 0.955 0.794

3 30 0.955 0.146 0.254 0.748 0.857 0.799 0.725 0.941 0.819 0.665 0.962 0.787

3 50 0.926 0.086 0.157 0.764 0.831 0.796 0.704 0.948 0.808 0.643 0.966 0.772

3 100 0.913 0.072 0.134 0.780 0.799 0.789 0.693 0.952 0.802 0.585 0.988 0.734

3 250 0.881 0.102 0.182 0.708 0.861 0.777 0.615 0.964 0.751 0.445 0.993 0.614

4 10 0.904 0.306 0.458 0.734 0.735 0.734 0.737 0.752 0.744 0.658 0.830 0.734

4 15 0.935 0.224 0.361 0.738 0.768 0.753 0.744 0.799 0.770 0.655 0.831 0.733

4 20 0.944 0.203 0.334 0.739 0.785 0.761 0.732 0.814 0.771 0.667 0.845 0.746

4 25 0.946 0.181 0.303 0.733 0.788 0.760 0.716 0.821 0.765 0.652 0.854 0.739

4 30 0.949 0.160 0.274 0.733 0.793 0.762 0.682 0.828 0.748 0.642 0.857 0.734

4 50 0.939 0.107 0.192 0.735 0.756 0.745 0.665 0.845 0.745 0.619 0.862 0.720

4 100 0.915 0.093 0.169 0.721 0.726 0.724 0.637 0.842 0.725 0.567 0.878 0.689

4 250 0.841 0.127 0.221 0.658 0.775 0.711 0.566 0.866 0.685 0.435 0.919 0.590

6.2.2.1 Scenario A - NO Stemming and NO Stopword Removal

In this section, we consider the several scenarios that k (size of the fingerprint) and j (minimum

size of the tweet features) take when considering that neither stemming nor stopword removal

is put into practice. Please consider Table 6.1.

41



An early analysis seems to suggest that there is inverse relation between precision and recall.

As the top-k value increases, so does recall, while the precision value decreases.

According to Eq. (2.8) and (2.9), this can be explained by the fact that as k increases, T2S2

values will also increase. This means that previous cases of “Negative” will now tend to be

determined as “False Positive”, thus decreasing precision. On the other side of this consequence,

tweets that had been determined as “False Negative” will enter the “Positive” frame, therefore

increasing the recall.

An additional look at the results of Table 6.1 also suggests that the threshold value of 0.5

provides a weak recall and f-measure values. Considering that the latter metric is a weighted

average of recall and precision, one can use it to determine what is the best performance scenario

above. By the f-measure standard, its maximum value of 0.833 is reached for threshold 0.10

when the minimum size word j = 3 and top-k = 20.

6.2.2.2 Scenario B - NO Stemming and YES Stopword Removal

In this section, we consider the several scenarios that k (size of the fingerprint) and j (minimum

size of the tweet features) take when considering the stemming is not used but stopword removal

is.

An early look at the results in Table 6.2 seem to keep the previously mentioned relation between

precision and recall. As the first decreases, the second increases. The removal of stopwords

provides slightly higher values all around, which can be shown by the highest f-measure value so

far, 0.841. This is result is obtained with minimum word size j = 1, top-k = 25 and a threshold

value of 0.10.

6.2.2.3 Scenario C - YES Stemming and NO Stopword Removal

In this section, we consider the several scenarios that k (size of the fingerprint) and j (minimum

size of the tweet features) take when considering the stemming is used but stopword removal is

not. Please conside Table 6.3.

Initial conclusions regarding the inverse relation between precision and recall continue to be the

same. While the first decreases, the latter decreases. Best case scenario occurs for an f-measure

value of 0.833 when j = 3, top-k = 20 and threshold= 0.10. These values are exactly the

same as those in Table 6.1, which seems to suggest that stemming provides little to no impact.

Nonetheless, this will be further looked into in the following section of this chapter.

42



Table 6.2: Results for Data Set I - no stemming but with stopword removal

Threshold 0.5 Threshold 0.15 Threshold 0.10 Threshold 0.05

j k Pre Rec F-Mea Pre Rec F-Mea Pre Rec F-Mea Pre Rec F-Mea

1 10 0.919 0.272 0.420 0.737 0.747 0.742 0.740 0.769 0.754 0.713 0.947 0.814

1 15 0.951 0.236 0.378 0.736 0.769 0.753 0.747 0.819 0.782 0.712 0.952 0.814

1 20 0.959 0.203 0.335 0.741 0.799 0.769 0.767 0.928 0.840 0.731 0.950 0.826

1 25 0.962 0.172 0.292 0.753 0.854 0.800 0.760 0.940 0.841 0.714 0.950 0.815

1 30 0.951 0.134 0.235 0.752 0.859 0.802 0.744 0.941 0.831 0.680 0.957 0.795

1 50 0.927 0.065 0.122 0.771 0.840 0.804 0.723 0.950 0.821 0.662 0.959 0.783

1 100 0.818 0.031 0.060 0.787 0.787 0.787 0.711 0.924 0.804 0.619 0.986 0.761

1 250 0.892 0.057 0.107 0.727 0.852 0.784 0.666 0.950 0.783 0.523 0.993 0.685

2 10 0.912 0.284 0.433 0.738 0.747 0.743 0.741 0.769 0.755 0.685 0.947 0.795

2 15 0.952 0.238 0.380 0.740 0.773 0.756 0.750 0.819 0.783 0.684 0.952 0.796

2 20 0.953 0.210 0.344 0.744 0.802 0.772 0.759 0.935 0.838 0.711 0.950 0.814

2 25 0.956 0.188 0.314 0.749 0.864 0.803 0.755 0.940 0.837 0.684 0.954 0.797

2 30 0.955 0.146 0.254 0.750 0.869 0.805 0.730 0.941 0.823 0.680 0.957 0.795

2 50 0.927 0.088 0.160 0.767 0.855 0.809 0.710 0.950 0.812 0.662 0.959 0.783

2 100 0.889 0.055 0.104 0.778 0.807 0.792 0.702 0.935 0.802 0.616 0.985 0.758

2 250 0.893 0.086 0.157 0.720 0.862 0.785 0.657 0.957 0.779 0.517 0.991 0.679

3 10 0.896 0.312 0.462 0.737 0.749 0.743 0.741 0.769 0.755 0.686 0.948 0.796

3 15 0.942 0.253 0.399 0.740 0.778 0.758 0.749 0.823 0.784 0.686 0.950 0.797

3 20 0.951 0.232 0.373 0.744 0.809 0.775 0.759 0.936 0.838 0.706 0.954 0.811

3 25 0.906 0.217 0.350 0.750 0.874 0.808 0.751 0.940 0.835 0.684 0.952 0.796

3 30 0.897 0.194 0.320 0.751 0.878 0.810 0.724 0.941 0.818 0.680 0.955 0.795

3 50 0.949 0.129 0.227 0.764 0.867 0.812 0.705 0.954 0.811 0.658 0.969 0.784

3 100 0.931 0.093 0.169 0.771 0.833 0.801 0.685 0.957 0.798 0.615 0.990 0.759

3 250 0.878 0.136 0.235 0.713 0.885 0.790 0.631 0.967 0.764 0.512 0.993 0.676

4 10 0.891 0.324 0.475 0.734 0.735 0.734 0.737 0.752 0.744 0.661 0.830 0.736

4 15 0.918 0.231 0.369 0.738 0.769 0.753 0.744 0.800 0.771 0.661 0.840 0.740

4 20 0.931 0.210 0.343 0.738 0.788 0.762 0.733 0.819 0.774 0.671 0.854 0.752

4 25 0.890 0.194 0.319 0.731 0.792 0.760 0.722 0.823 0.769 0.656 0.855 0.742

4 30 0.877 0.172 0.288 0.729 0.793 0.760 0.686 0.828 0.750 0.646 0.857 0.737

4 50 0.930 0.114 0.202 0.732 0.776 0.754 0.669 0.854 0.750 0.619 0.866 0.722

4 100 0.912 0.107 0.191 0.723 0.747 0.735 0.640 0.852 0.731 0.581 0.881 0.700

4 250 0.842 0.138 0.237 0.666 0.785 0.720 0.584 0.874 0.700 0.468 0.919 0.621

43



Table 6.3: Results for Data Set I - with stemming but with no stopword removal

Threshold 0.5 Threshold 0.15 Threshold 0.10 Threshold 0.05

j k Pre Rec F-Mea Pre Rec F-Mea Pre Rec F-Mea Pre Rec F-Mea

1 10 0.908 0.270 0.416 0.662 0.754 0.705 0.645 0.768 0.701 0.591 0.947 0.728

1 15 0.955 0.217 0.353 0.654 0.773 0.708 0.645 0.816 0.720 0.587 0.950 0.726

1 20 0.979 0.164 0.280 0.653 0.790 0.715 0.633 0.830 0.718 0.604 0.948 0.738

1 25 0.968 0.105 0.189 0.647 0.799 0.715 0.630 0.881 0.735 0.575 0.952 0.717

1 30 0.962 0.086 0.158 0.661 0.800 0.724 0.628 0.928 0.749 0.551 0.957 0.699

1 50 0.900 0.031 0.060 0.688 0.788 0.735 0.609 0.943 0.740 0.525 0.967 0.680

1 100 0.833 0.017 0.034 0.700 0.714 0.707 0.626 0.923 0.746 0.490 0.988 0.655

1 250 0.769 0.017 0.034 0.673 0.795 0.729 0.570 0.945 0.711 0.407 0.993 0.578

2 10 0.913 0.270 0.417 0.735 0.754 0.744 0.706 0.771 0.737 0.619 0.948 0.749

2 15 0.954 0.213 0.349 0.717 0.776 0.745 0.700 0.819 0.755 0.611 0.952 0.744

2 20 0.962 0.176 0.297 0.713 0.792 0.750 0.682 0.835 0.751 0.640 0.952 0.765

2 25 0.958 0.119 0.211 0.699 0.799 0.745 0.680 0.883 0.769 0.595 0.952 0.732

2 30 0.955 0.110 0.198 0.708 0.804 0.753 0.672 0.933 0.781 0.584 0.959 0.726

2 50 0.920 0.040 0.076 0.721 0.793 0.756 0.637 0.950 0.762 0.547 0.969 0.699

2 100 0.842 0.028 0.053 0.733 0.737 0.735 0.653 0.928 0.767 0.507 0.991 0.671

2 250 0.826 0.033 0.063 0.691 0.823 0.751 0.585 0.952 0.725 0.411 0.995 0.581

3 10 0.906 0.267 0.412 0.736 0.745 0.741 0.741 0.769 0.755 0.687 0.947 0.796

3 15 0.958 0.238 0.381 0.742 0.778 0.760 0.748 0.816 0.780 0.682 0.952 0.795

3 20 0.954 0.213 0.349 0.743 0.802 0.772 0.756 0.928 0.833 0.705 0.952 0.810

3 25 0.950 0.165 0.282 0.747 0.854 0.797 0.746 0.936 0.831 0.679 0.955 0.794

3 30 0.955 0.146 0.254 0.748 0.857 0.799 0.725 0.941 0.819 0.665 0.962 0.787

3 50 0.926 0.086 0.157 0.764 0.831 0.796 0.704 0.948 0.808 0.643 0.966 0.772

3 100 0.913 0.072 0.134 0.780 0.799 0.789 0.693 0.952 0.802 0.585 0.988 0.734

3 250 0.881 0.102 0.182 0.708 0.861 0.777 0.615 0.964 0.751 0.445 0.993 0.614

4 10 0.904 0.306 0.458 0.734 0.735 0.734 0.737 0.752 0.744 0.658 0.830 0.734

4 15 0.935 0.224 0.361 0.738 0.768 0.753 0.744 0.799 0.770 0.655 0.831 0.733

4 20 0.944 0.203 0.334 0.739 0.785 0.761 0.732 0.814 0.771 0.667 0.845 0.746

4 25 0.946 0.181 0.303 0.733 0.788 0.760 0.716 0.821 0.765 0.652 0.854 0.739

4 30 0.949 0.160 0.274 0.733 0.793 0.762 0.682 0.828 0.748 0.642 0.857 0.734

4 50 0.939 0.107 0.192 0.735 0.756 0.745 0.665 0.845 0.745 0.619 0.862 0.720

4 100 0.915 0.093 0.169 0.721 0.726 0.724 0.637 0.842 0.725 0.567 0.878 0.689

4 250 0.841 0.127 0.221 0.658 0.775 0.711 0.566 0.866 0.685 0.435 0.919 0.590

44



6.2.2.4 Scenario D - YES Stemming and YES Stopword Removal

In this section, we consider the several scenarios that k (size of the fingerprint) and j (minimum

size of the tweet features) take when considering the both stemming and stopword removal are

put into practice. Please consider Table 6.4.

As the top-k parameter increases, precision decreases while recall increases. With treshold= 0.10,

the best case scenario happens when f-measure= 0.841, for j = 1 and k = 25. Overall values

seem to be identical to those in Table 6.2, which keeps suspicion high regarding stemming

providing no improvement.

6.2.3 Results Analysis

In order to fully comprehend the results, a “point of view” approach will be used. In other

words, we will make sense of those values from different pertinent perspectives that will help

measure how each of steps taken influence the results.

6.2.3.1 Best T2S2 Value

Let us take a look at the Table 6.5, with all the best performance values taken from scenarios

A, B, C and D. Remember that j represents the minimum sized word kept by the algorithm and

that k is the maximum size of the fingerprint.

Looking at Table 6.5, it is clear that the best performance comes when threshold= 0.10, thus

demolishing the notion that 0.5 would be a fair value.

Such a low threshold means that T2S2 score values are typically small. Since our formula comes

from Eq. (5.5), there is a direct relation between the number of words that match from the

tweet onto the fingerprint and the T2S2 score itself. Please consider Figure 6.1 taken from the

above scenario B (stopword removal but no stemming).

The vertical axis contains the number of tweets with T2S2 >= 0.10 which the algorithm deemed

to belong to a certain trend (“True Positives” and “False Positives”), while the horizontal axis

has the ratio between the number of tweet words that match the top-k list and the number of

total words in the tweet. In other words, when half of the words in the tweet belong to the top-k

word list of a given trend (horizontal axis= 0.5), 2500 classifications with T2S2 >= 0.10 have

been given.

It is important to remember that, even if typically half of the words belong to a trends top-k

list, it does not mean those are high valued by the membership function. This further explains

why T2S2 values are so low.

Further analysis into Figure 6.1 shows that there are very few perfect match cases (T2S2 = 1),

45



Table 6.4: Results for Data Set I - with stemming and with stopword removal

Threshold 0.5 Threshold 0.15 Threshold 0.10 Threshold 0.05

j k Pre Rec F-Mea Pre Rec F-Mea Pre Rec F-Mea Pre Rec F-Mea

1 10 0.919 0.272 0.420 0.737 0.747 0.742 0.740 0.769 0.754 0.713 0.947 0.814

1 15 0.951 0.236 0.378 0.736 0.769 0.753 0.747 0.819 0.782 0.712 0.952 0.814

1 20 0.959 0.203 0.335 0.741 0.799 0.769 0.767 0.928 0.840 0.731 0.950 0.826

1 25 0.962 0.172 0.292 0.753 0.854 0.800 0.760 0.940 0.841 0.714 0.950 0.815

1 30 0.951 0.134 0.235 0.752 0.859 0.802 0.744 0.941 0.831 0.680 0.957 0.795

1 50 0.927 0.065 0.122 0.771 0.840 0.804 0.723 0.950 0.821 0.662 0.959 0.783

1 100 0.818 0.031 0.060 0.787 0.787 0.787 0.711 0.924 0.804 0.619 0.986 0.761

1 250 0.892 0.057 0.107 0.727 0.852 0.784 0.666 0.950 0.783 0.523 0.993 0.685

2 10 0.912 0.284 0.433 0.738 0.747 0.743 0.741 0.769 0.755 0.685 0.947 0.795

2 15 0.952 0.238 0.380 0.740 0.773 0.756 0.750 0.819 0.783 0.684 0.952 0.796

2 20 0.953 0.210 0.344 0.744 0.802 0.772 0.759 0.935 0.838 0.711 0.950 0.814

2 25 0.956 0.188 0.314 0.749 0.864 0.803 0.755 0.940 0.837 0.684 0.954 0.797

2 30 0.955 0.146 0.254 0.750 0.869 0.805 0.730 0.941 0.823 0.680 0.957 0.795

2 50 0.927 0.088 0.160 0.767 0.855 0.809 0.710 0.950 0.812 0.662 0.959 0.783

2 100 0.889 0.055 0.104 0.778 0.807 0.792 0.702 0.935 0.802 0.616 0.985 0.758

2 250 0.893 0.086 0.157 0.720 0.862 0.785 0.657 0.957 0.779 0.517 0.991 0.679

3 10 0.896 0.312 0.462 0.737 0.749 0.743 0.741 0.769 0.755 0.686 0.948 0.796

3 15 0.942 0.253 0.399 0.740 0.778 0.758 0.749 0.823 0.784 0.686 0.950 0.797

3 20 0.951 0.232 0.373 0.744 0.809 0.775 0.759 0.936 0.838 0.706 0.954 0.811

3 25 0.906 0.217 0.350 0.750 0.874 0.808 0.751 0.940 0.835 0.684 0.952 0.796

3 30 0.897 0.194 0.320 0.751 0.878 0.810 0.724 0.941 0.818 0.680 0.955 0.795

3 50 0.949 0.129 0.227 0.764 0.867 0.812 0.705 0.954 0.811 0.658 0.969 0.784

3 100 0.931 0.093 0.169 0.771 0.833 0.801 0.685 0.957 0.798 0.615 0.990 0.759

3 250 0.878 0.136 0.235 0.713 0.885 0.790 0.631 0.967 0.764 0.512 0.993 0.676

4 10 0.891 0.324 0.475 0.734 0.735 0.734 0.737 0.752 0.744 0.661 0.830 0.736

4 15 0.918 0.231 0.369 0.738 0.769 0.753 0.744 0.800 0.771 0.661 0.840 0.740

4 20 0.931 0.210 0.343 0.738 0.788 0.762 0.733 0.819 0.774 0.671 0.854 0.752

4 25 0.890 0.194 0.319 0.731 0.792 0.760 0.722 0.823 0.769 0.656 0.855 0.742

4 30 0.877 0.172 0.288 0.729 0.793 0.760 0.686 0.828 0.750 0.646 0.857 0.737

4 50 0.930 0.114 0.202 0.732 0.776 0.754 0.669 0.854 0.750 0.619 0.866 0.722

4 100 0.912 0.107 0.191 0.723 0.747 0.735 0.640 0.852 0.731 0.581 0.881 0.700

4 250 0.842 0.138 0.237 0.666 0.785 0.720 0.584 0.874 0.700 0.468 0.919 0.621

46



Table 6.5: Summary of the Best Case Scenarios

Scenario Threshold j k Pre Rec F-Mea

A 0.10 3 20 0.756 0.928 0.833

B 0.10 1 25 0.760 0.940 0.841

C 0.10 3 20 0.756 0.928 0.833

D 0.10 1 25 0.760 0.940 0.841

Figure 6.1: Num. of tweets with T2S2 >= 0.10 per % of tweet matching words with fingerprint

i.e., all the words in the tweet match the top words from the trend top-k list. In addition, very

few tweets with less than 10% of matching words are considered to belong to any trend.

In conclusion, with the Twitter Topic Fuzzy Fingerprint, best performance comes when a thresh-

old value is low, typically 0.10.

6.2.3.2 Importance of Fingerprint Size

One of the parameters under scrutiny by this thesis, is the impact of the k value in the top-k

approach to building a fingerprint. As seen in chapter 5, k equals the maximum number of

keywords from which to build the fingerprint with, based on the training data set.

In this project, k has a minimum value of 10 and a maximum value of 250. Looking at Figure

6.2, built from Scenario B, it is immediate apparent that for k= [10, 15, 20, 25] as k increases, so

does precision,recall and f-measure. It peaks at k = 25 where precision starts to decline while

recall continues to increase, with the exception of k = 100 where it has a small decrease.

Precision seems to have an higher impact on f-measure since it follows its trend to decline for

k > 25 despite an increasing recall. This suggests that the number of False Positives will increase

for higher values of k.

47



Figure 6.2: Impact of Fingerprint Size on performance

By analyzing f-measure, it can be stated that for a low value of k = 25, under the right parameter

configuration, optimal results are provided (f-measure= 0.841). This is particularly interesting

given Twitter’s nature of limiting content to 140 characters, which, as a consequence, limits the

number of words.

Such a low value of k implies that each topic has very important terms that will feature high

on the top-k list and that become essential in helping our method perform better.

6.2.3.3 Importance of Minimum Sized Words

Let us now take a look at how the removal of short words impacts this algorithm. Please consider

Scenario A, where neither stemming nor stopword removal was executed. The threshold value

is 0.10 and k = 20.

In Figure 6.3, precision, recall and f-measure reach their maximum value when the minimum

sized word kept is at least 3 characters long. This suggests that there is a fine balance to be

maintained between removing no words and removing too many words based on their length.

For a more detailed look at the values in Figure 6.3, please consult the Table 6.6.

Despite Table 6.6, the Twitter Topic Fuzzy Fingerprint algorithm performs better when stop-

words are removed (Scenario B). For j = 1 and k = 25, f-measure= 0.841 as opposed to Scenario

A’s performance (j = 3, k = 20, f-measure= 0.833). In other words, if stopwords are removed,

it will not be necessary to remove short words. A possible explanation to this phenomenon is

that the short words to be removed are typically stopwords, which will result in a similar effect.

However, some stopwords have more than 2 characters (j >= 3) which means that it will not

48



Figure 6.3: Impact on performance as the minimum size of words kept is varied

Table 6.6: Numerical analysis of the importance of removing short words

Original Memb. Func.

j k Pre Rec F-Mea

1 20 0.633 0.830 0.718

2 20 0.682 0.835 0.751

3 20 0.756 0.928 0.833

4 20 0.732 0.814 0.771

provide the full force of stopword removal, therefore not reaching the same f-measure value.

In conclusion, best case scenario in terms of the minimum sized words to be kept is usually

reached when all words have at least 3 characters, as long as stopwords are not removed.

6.2.3.4 Importance of Removal of Stopwords

In order to determine the importance the preprocessing technique of removing stopwords, we

will compare all the performance metrics across scenarios A,B,C and D. Please remember the

rules of each scenario:

• Scenario A: Without Stemming and Without Stopword Removal

• Scenario B: Without Stemming and With Stopword Removal

• Scenario C: With Stemming and Without Stopword Removal

• Scenario D: With Stemming and With Stopword Removal

49



Table 6.7 shows how our method behaves for the previously agreed upon best case scenario of

threshold= 0.10 and minimum size words j = 1.

Table 6.7: Numerical analysis of the importance of removing stopwords and stemming

Scenario A Scenario B Scenario C Scenario D

j k Pre Rec F-Mea Pre Rec F-Mea Pre Rec F-Mea Pre Rec F-Mea

1 5 0.654 0.756 0.701 0.733 0.742 0.737 0.654 0.756 0.701 0.733 0.742 0.737

1 10 0.645 0.768 0.701 0.740 0.769 0.754 0.645 0.768 0.701 0.740 0.769 0.754

1 15 0.645 0.816 0.720 0.747 0.819 0.782 0.645 0.816 0.720 0.747 0.819 0.782

1 20 0.633 0.830 0.718 0.767 0.928 0.840 0.633 0.830 0.718 0.767 0.928 0.840

1 25 0.630 0.881 0.735 0.760 0.940 0.841 0.630 0.881 0.735 0.760 0.940 0.841

1 30 0.628 0.928 0.749 0.744 0.941 0.831 0.628 0.928 0.749 0.744 0.941 0.831

1 50 0.609 0.943 0.740 0.723 0.950 0.821 0.609 0.943 0.740 0.723 0.950 0.821

1 100 0.626 0.923 0.746 0.711 0.924 0.804 0.626 0.923 0.746 0.711 0.924 0.804

1 250 0.570 0.945 0.711 0.666 0.950 0.783 0.570 0.945 0.711 0.666 0.950 0.783

Figure 6.4 shows the evolution of precision, recall and f-measure per scenario for top-k = 25.

Figure 6.4: Impact of stopwords removal in performance

When analyzing both Table 6.7 and Figure 6.4, it becomes clear that Scenarios B and D, where

stopwords are removed, perform better in terms of precision, recall and f-measure.

In conclusion, the removal of stopwords will provide an improved and more precise algorithm

for this data set of tweets.

50



6.2.3.5 Importance of Stemming

Further analysis into Table 6.7 and Figure 6.4, will also reveal how stemming impacts our

method: it does not.

Comparing Scenario A with Scenario C, where stopwords removal was not done, the values are

exactly the same, despite the fact that stemming was activated for latter case. The same is true

for the comparison between Scenarios B and D, where stopword removal was executed.

A possible explanation for this, may derive from the nature of language in Twitter itself. Since

tweets are short in nature, words may often occur in their stem form or in such form that a formal

stemmer cannot work. Porter’s Stemmer cannot process words such as “luv”,“lol”,“omg”,etc...

This is a lingo very unique to the informal nature of social networking communication, while a

Stemming algorithm can only truly be effective with formal and well written texts.

In conclusion, Stemming, as a preprocessing technique, does not improve nor damage our

method’s performance. However, since it is a time and resource consuming task, it is preferable

to not stem.

6.2.3.6 Execution Efficiency

So far, we have looked at the Twitter Topic Fuzzy Fingerprint method from a performance point

of view only. However, as it was mentioned throughout this document, due to the immediate

nature of Twitter and amount of data it processes, time is also an important parameter.

Please consider Table 6.8, where j represents the minimum sized word to be kept by our method,

and k is the number of words of the fingerprint. All values are represented in seconds and tests

were performed on a laptop with Intel i7-3517U processor, 8GB RAM 1600Mhz and a SSD (solid

state drive).

Table 6.8: Execution Speed

Scenario j k Preprocessing Build Model Evaluate Test Set Total

A 3 20 2.030 s 0.507 s 2.537 s

B 1 25 49.900 s 0.643 s 50.543 s

C 3 20 24.385 s 0.615 s 25.000 s

D 1 25 81.558 s 0.506 s 82.064 s

We considered the best performance for each Scenario, as shown by Table 6.5. Table 6.8 shows

that the evaluation of our 585 test tweets is quite fast, regardless of whether stopwords or

stem words were used. It will always take an average of 0.6 seconds, regardless of the scenario

considered.

However, the use of stopword removal and/or stemming does impact on how long it takes to

51



pre-process the tweets and build the data model. Stemming on its own (Scenario C) takes almost

11 times longer to perform the first step, while stopword removal (Scenario B) takes 24 times

longer. In Scenario D, where both techniques are in play, it takes almost 40 times longer.

By comparing the total time taken with Scenarios B and C, it is shown that the removal of

stopwords has a bigger impact on computational performance than stemming.

While Table 6.5 shows that removing stopwords provides better results (f-measure= 0.841), the

fact of the matter is that without removing stopwords, the Twitter Topic Fuzzy Fingerprint

is much faster and almost equally effective (f-measure= 0.833). Henceforth, the latter will be

called “Most Effective Case Scenario” while the the first will be the simply be called “Best Case

Scenario”.

6.2.4 Most Effective Case Scenario

With all of the above sections taken under consideration, it is fair to sum up things as follows.

The Twitter Topic Fuzzy Fingerprint Algorithm for Topic Detection within Twitter, achieves

optimal performance and execution when:

• considering a low threshold value for acceptance of a twitter belonging to a trend (0.10)

• configuring a low value of k for the size of the list of the fingerprint (k = 20)

• removing short words from the corpus, only keeping words with a minimum length of 3

characters

• not removing stopwords from the corpus

• not performing stemming operations

In other words, Scenario A, for j = 3, k = 20 and threshold=0.10.

6.2.5 Comparison to Other Methods

It is fair to state that our method performs quite well, so far. But how does it fare against other

methods that are known for good performance in Topic Detection?

In this section, the Twitter Topic Fuzzy Fingerprint will be put up against the two methods we

presented documented in the “Related Work” chapter: k-Nearest Neighbor (kNN) and Support

Vector Machine (SVM). The exact same training data sets and test data sets were used.

For this purpose of this comparison, we will first see how the configurations of the parameters

influence kNN and SVM. Secondly, we will compare them to our algorithm in equal parameter

values. Finally, we will compare best case scenarios.

52



The tests were performed by the WEKA tool [28], after both the training and test sets were

preprocessed to a bag-of-words representation, Figure 2.1, with tfidf weighting, Eq. (2.3).

6.2.5.1 Twitter Topic Fuzzy FingerPrint vs kNN

As detailed in Chapter 2, kNN is an algorithm heavily influenced by the spacial representation

of the tweets (bag-of-words). It places the tweet under analysis, inside that N -dimensional rep-

resentation of the data set and then inquires the k Nearest Neighbors as to which category/trend

they belong to. Using a majority rule, it will then attribute that same category to the tweet.

Firstly, let us see how it stands on its own according to the same Scenarios A, B, C and D.

Please consider Table 6.9 with the performance results for all scenarios. Different values of k

where considered and j represents the minimum sized word kept for each situation. Due to

limitations in the use of WEKA software, the distance measure considered was the Euclidean

distance as opposed to the cosine similarity presented in Eq. 2.6.

Table 6.9: kNN’s performance for Scenarios A,B,C and D

Scenario A Scenario B Scenario C Scenario D

j k Pre Rec F-Mea Pre Rec F-Mea Pre Rec F-Mea Pre Rec F-Mea

1 1 0.479 0.135 0.211 0.470 0.123 0.195 0.479 0.135 0.211 0.470 0.123 0.195

1 3 0.466 0.321 0.380 0.454 0.329 0.382 0.466 0.321 0.380 0.454 0.329 0.382

1 5 0.467 0.280 0.350 0.484 0.309 0.377 0.467 0.280 0.350 0.484 0.309 0.377

1 10 0.332 0.229 0.271 0.384 0.232 0.289 0.332 0.229 0.271 0.384 0.232 0.289

2 1 0.509 0.137 0.216 0.470 0.125 0.197 0.509 0.137 0.216 0.470 0.125 0.197

2 3 0.453 0.324 0.378 0.447 0.323 0.375 0.453 0.324 0.378 0.447 0.323 0.375

2 5 0.422 0.285 0.340 0.455 0.316 0.373 0.422 0.285 0.340 0.455 0.316 0.373

2 10 0.369 0.227 0.281 0.380 0.239 0.293 0.369 0.227 0.281 0.380 0.239 0.293

3 1 0.486 0.137 0.214 0.463 0.125 0.197 0.486 0.137 0.214 0.463 0.125 0.197

3 3 0.448 0.319 0.373 0.453 0.319 0.374 0.448 0.319 0.373 0.453 0.319 0.374

3 5 0.441 0.299 0.356 0.443 0.314 0.368 0.441 0.299 0.356 0.443 0.314 0.368

3 10 0.360 0.247 0.293 0.366 0.237 0.288 0.360 0.247 0.293 0.366 0.237 0.288

4 1 0.634 0.142 0.232 0.613 0.128 0.212 0.634 0.142 0.232 0.613 0.128 0.212

4 3 0.466 0.341 0.394 0.461 0.340 0.391 0.466 0.341 0.394 0.461 0.340 0.391

4 5 0.470 0.324 0.384 0.458 0.323 0.379 0.470 0.324 0.384 0.458 0.323 0.379

4 10 0.463 0.247 0.322 0.464 0.239 0.315 0.463 0.247 0.322 0.464 0.239 0.315

The results are quite poor, with the best f-measure value peaking at an unimpressive 0.394,

when 3 neighbors are consulted and words under 4 characters long are removed from the corpus.

A possible explanation for this poor performance is the unbalanced nature of the training data

set, as explained by Zhang in [8]. When dealing with unbalanced data sets, kNN completely

ignores the minority classes and will often mistakenly classify a tweet to the majority category.

53



It is interesting to see that impact of stemming remains null. If, as it was done in the previous

section, comparing Scenario A with C, one can state that the results are exactly the same. This

remains true to the comparison between Scenarios B and D.

In addition, the results tend to be better with stopword removal but only for low values of j.

When j = 4, kNN performs better for Scenarios A and C (no stopword removal) which seems

to dictate that dimensionality reduction is of great importance to improve this method.

When comparing kNN with the Best Case Scenario from Twitter Topic Fuzzy Fingerprints

(j = 1, k = 25, threshold= 0.10 and stopword removal), Table 6.10, it is clear that our algorithm

is better:

Table 6.10: kNN’s performance Best Case Scenario

Method Pre Rec F-Mea

Twitter Topic Fuzzy Fp (j = 1,k = 25) 0.760 0.940 0.841

kNN (j = 4,k = 3) 0.466 0.341 0.394

But let us now compare both methods according to the same configuration, 6.11. In this case,

kNN’s best case configuration occurs when j = 4, no stopwords are removed and stemming is

not performed (Scenario A).

Table 6.11: kNN vs Twitter Topic Fuzzy Fingerprint

Method k Pre Rec F-Mea

kNN

1 0.634 0.142 0.232

3 0.466 0.341 0.394

5 0.470 0.324 0.384

10 0.463 0.247 0.322

Twitter Topic Fuzzy FP

10 0.737 0.752 0.744

15 0.744 0.799 0.770

20 0.732 0.814 0.771

25 0.716 0.821 0.765

30 0.682 0.828 0.748

50 0.665 0.845 0.745

100 0.637 0.842 0.725

250 0.566 0.866 0.685

Once again, kNN finds itself outperformed. Whether it is precision, recall of f-measure, under

the same configuration, the Twitter Topic Fuzzy Fingerprint is just better.

Before departing from this comparison, it is important to remember that, as previously ex-

plained, the meaning of k is different between the two methods. In scope of kNN, it represents

the number of neighbors used to determine the category/trend that a tweet belongs to. In the

54



scope of the Twitter Topic Fuzzy Fingerprint, it represents the size of the fingerprint, i.e., the

number of keywords the fingerprint list contains.

6.2.5.2 Twitter Topic Fuzzy FingerPrint vs SVM

Much like kNN, SVM is also a vector representation influenced algorithm (bag-of-words). It

defines an hyperplane between categories and uses the borderline documents to decide which it

belongs to.

Once again, with the help of WEKA, tests were conducted to compare SVM’s performance

against the Fuzzy Fingerprint. A number of different parameters were tested and optimized,

and the best performance was achieved using a linear kernel and a small soft-margin value:

C = 0.01. Additionally, the parameters to “normalize” and “probability estimates” where

activated. This means that, as opposed to a binary output on whether a tweet belonged to a

certain topic (either True(+1) of False(+1)), SVM made internal calculations that estimated

how probable the tweet was that to belonged to it.

With these parameters in mind, please consult Table 6.12 for SVM’s performance. It contains

once again, all for Scenarios from the previous testing (A, B, C and D) and j represents the

minimum size of the words kept in each scenario.

Table 6.12: SVM’s performance for Scenarios A,B,C and D

Scenario A Scenario B Scenario C Scenario D

j Pre Rec F-Mea Pre Rec F-Mea Pre Rec F-Mea Pre Rec F-Mea

1 0.786 0.700 0.741 0.858 0.652 0.741 0.786 0.700 0.741 0.858 0.652 0.741

2 0.773 0.691 0.730 0.863 0.712 0.780 0.773 0.691 0.730 0.863 0.712 0.780

3 0.807 0.683 0.740 0.872 0.674 0.760 0.807 0.683 0.740 0.872 0.674 0.760

4 0.787 0.589 0.674 0.836 0.625 0.715 0.787 0.589 0.674 0.836 0.625 0.715

Overall, the performance is far better than kNN’s. For Scenarios B and D, where stopwords were

removed, when j = 2 it scores a f-measure=0.780. However, it does not match the Twitter Topic

Fuzzy Fingerprints Best Case Scenario where f-measure= 0.841 for j = 1, k = 25, threshold=0.10

and stopwords are removed, as shown by Table 6.13.

Table 6.13: SVM performance Best Case Scenario

Method Pre Rec F-Mea

Twitter Topic Fuzzy FP (j = 1,k = 25) 0.760 0.940 0.841

SVM (j = 2) 0.863 0.712 0.780

Despite being more precise, SVM falls short in terms of recall, which explains the difference in

f-measure. This SVM performance was only achieved when using a normalized tfidf approach

55



to the document representation, Eq. (2.4). During our testing, if using the most common tfidf

variant, Eq. (2.3), the results would deteriorate immensely as SVM would fall into the same

trap as kNN and classify all samples to the majority category/topic.

Let us now compare both methods according to the same configuration, 6.14. In this case,

SVM’s best case configuration occurs when j = 2, stopwords are removed and stemming is not

performed (Scenario B). In terms of our algorithm, the best value of k is k = 20.

Table 6.14: SVM vs Twitter Topic Fuzzy Fingerprint

Method Pre Rec F-Mea

SVM (j = 2) 0.863 0.712 0.780

Twitter Topic Fuzzy FP (j = 2,k = 20) 0.759 0.935 0.838

The conclusion remains the same. SVM is more precise but the Twitter Topic Fuzzy Fingerprint

method excels in terms of recall which provides a better f-measure.

6.2.5.3 Overall Comparison

When comparing all 3 methods, it is evident that the Twitter Topic Fuzzy Fingerprint algorithm

outperforms both kNN and SVM. The proposed method achieves the best values for precision,

recall and f-measure. The SVM strategy, while being more precise achieves almost 32% lower

recall. The results achieved by kNN are definitely worse than the other two methods.

The reason why SVM performs outperforms kNN is because it can be better fine tuned than the

latter. As mentioned above, this performance is the result of a linear kernel function input with

a soft margin C = 0.01. Additional testing showed that non-linear kernels displayed the same

kind of results as kNN, exactly for the same reason of being unable to handle an unbalanced

data set.

Table 6.15: Overall Comparison

Method Precision Recall F-Measure

Twitter Topic Fuzzy FP (j = 1,k = 25) 0.760 0.940 0.841

kNN (j = 4,k = 3) 0.466 0.341 0.394

SVM (j = 2) 0.863 0.712 0.780

6.2.5.4 Execution Efficiency Comparison

In this section, we will inspect how the Twitter Topic Fuzzy Fingerprint fares against SVM

and kNN from a time consumed perspective. In this occasion, we will consider the Most Ef-

fective Case Scenario from our algorithm, where f-measure= 0.833 when j = 3, k = 20 and

threshold=0.10.

56



In terms of time taken to build the model and to perform classification, one can not directly

compare fuzzy fingerprints with the other two methods because different tool-kits are being

used.

In our algorithm, the preprocessing stage, implemented in Python, is a part of reading the tweets

and creating the model as the execution progresses. In kNN and SVM, the preprocessing stage

consist not only of removing stopwords, but also calculating the TF-IDF and creating an output

that is fit for WEKA, often known as the Attribute-Relation File Format (ARFF). For the these

two methods, the model itself is only built within the WEKA execution.

Nevertheless, since our Most Effective Case Scenario is without stopword removal and stemming,

the preprocessing stage for kNN and SVM consists solely of: reading the tweets, removing all

words with less than j = 3 characters, calculate tfidf and build the bag-of-words representation

in ARFF for WEKA.

Table 6.16 shows the processing time comparison, in seconds, for j = 3 when neither stopwords

nor stemming is performed.

Table 6.16: Execution Speed Comparison

Method Preprocessing Build Model Evaluate Test Set Total

Fuzzy Fp 2.030 s 0.507 s 2.537 s

kNN 416.441 s 0.070 s 32.730 s 449.241 s

SVM 416.441 s 642.830 s 4.170 s 1063.441 s

Table 6.16 clearly shows how much faster the Twitter Topic Fuzzy Fingerprint algorithm is. It

is 177 times faster than kNN and 419 times faster than SVM.

Even if you consider that the disparity in the preprocessing method may be harmful to an

unbiased comparison, it still evaluates the data set 64 times faster than kNN and 8 times faster

than SVM.

These results can be explained by the different nature of the algorithms. kNN is a lazy algorithm,

where all computation is deferred until classification, which means that the reported time relates

to preprocessing and loading time. In what concerns to SVM, a significant part of the time is

attributed to creating the model. In our approach, building the model is just a linear function

of the number of words being considered for training.

Finally, the size of model is also a significant issue, specially when one aims at processing

big quantities of data, in a distributed fashion. The fuzzy fingerprint model for a given topic

corresponds to a vector of k fixed elements, each one containing the value of a feature (e.g. the

word) and its score. Therefore it is fixed in size and corresponds to pruning the list of relevant

words at k.

57



6.3 Data Set II

The second data set used in this thesis is composed exclusively of Portuguese tweets. It was

used to study the behavior of the Twitter Topic Fuzzy Fingerprints method with an increasing

number of fingerprints in detecting fewer topics.

6.3.1 Training Set

Using the same method as with Data Set I, we obtained just over 1.2 million Portuguese tweets,

from for March, 14th to March 20th, 2014. We extracted the top trends on the 17th of March

and among them, we selected two topics that seemed to have the most interesting content:

• #AnittaNarizDeCapivara, regarding Anitta’s (Brazilian singer) new nose job which made

an impact during the annual award show “Melhores do Ano”;

• #FicaVanessa, for people supporting Big Brother’s Brazil participant Vanessa who was at

risk of leaving the show;

Despite being top trends, we found that these hashtags only occurred 289 and 822 times in our

whole set of 1.2 million tweets.

Even though we only used 2 topics for testing purposes (due to the difficulty in annotating a

higher number of topics), the training set was built using 100 different topics created after the

most popular hashtags on the database. The training set is composed of over 600000 tweets

in Portuguese language, where the most popular trend is #kca (18000 tweets) and the rarer is

#1dnamix (139 tweets).

6.3.2 Experiments and Results

The test set was impartially built from uncategorized tweets belonging to the original set of 1.2

million documents.

Because of the TV broadcasting nature of the two target trends (#AnittaNarizDeCapivara and

#FicaVanessa), where the owners of the trends encourage its use and propagation, it was very

difficult to find many uncategorized tweets that clearly belonged to those topics. Only 82 and

43 respectively were annotated.

In order to increase the size of test set, a few more uncategorized tweets were added to it, making

for a total of 210 samples. Whilst still short, it provides a chance for our algorithm to detect

negative scenarios efficiently, since the added tweets belong to untrained top trends.

Through extensive testing, we found that the best results for the Twitter Topic Fuzzy Finger-

prints Algorithm were achieved when:

58



• considering a low threshold value for acceptance of a twitter belonging to a topic (T2S2

= 0.10);

• configuring a value of k = 40 for the size of the list of the fingerprint;

• removing short words from the corpus, only keeping words with a minimum length of 4

characters(j = 4);

• removing stopwords from the corpus;

• not performing Stemming operations;

6.3.3 Results Analysis

Table 6.17 summarizes the algorithm’s performance. Regardless of the value of k, precision

values are always high, which indicates that False Positive scenarios are rare or non-existent.

However, recall is low for small values of k = [10; 15] peaking at k = 40, when no False Negative

scenarios are identified.

Table 6.17: Twitter Topic Fuzzy Fingerprint Performance

j k Precision Recall F-Measure

4 10 1.000 0.621 0.766

4 15 1.000 0.694 0.819

4 20 1.000 0.815 0.898

4 25 1.000 0.952 0.975

4 30 1.000 0.976 0.988

4 40 0.992 1.000 0.996

4 50 0.992 1.000 0.996

4 75 1.000 0.976 0.988

4 100 1.000 0.968 0.984

4 150 1.000 0.968 0.984

4 250 1.000 0.976 0.988

4 500 1.000 0.976 0.988

A low recall is also a consequence of typically small T2S2 similarity values, which means that

Positive cases are not being identified because they were below the threshold= 0.10. Consider the

example of a preprocessed tweet with 8 features, two of which match a given fingerprint: even if

the matching words are the highest ranked membership terms, T2S2 would score approximately

under 2
8 = 0.25.

As k increases, either more matching words between the tweet features and the fingerprint are

found, or the same ranked words have a higher membership value which encourages a better

59



T2S2 score.

The best case scenario scores f-measure= 0.996, which, while extremely positive, is suspicious

due to the fact that the data set is short and possibly over trained. In Data Set I, the Twitter

Fuzzy Fingerprints method reached f-measure= 0.841 for a larger multi-language data set and

with more target top trends.

Here we tested for 2 target topics out of the possible 100 training trends. The purpose behind

this approach was to study how the Twitter Fuzzy Fingerprints method would behave when

approaching a larger and more realistic number of different possible trends, and to study the

impact of using the Inverse Topic Frequency (ITF) which should theoretically improve the results

with the increase in the number of topics.

6.3.4 kNN and SVM Performance

In order to test kNN and SVM, stopwords were removed but stemming was not performed.

The final representation of either training and test set is a bag-of-words type, Figure 2.1, with

TF-IDF weighting, Eq. (2.3). The tests were performed using the WEKA framework.

kNN was executed with the following k values: [3,5,10,30,50]. In either of those scenarios, the

algorithm was incapable of identifying a single True Positive case, i.e., precision= 0, recall= 0,

f-measure= 0. Instead, it classified all the samples as a part of the majority trained class #kca,

which is non-existent in the test set.

For SVM, a number of different parameters were tested and optimized. Even with the same

configuration as that used with Data Set I (linear kernel and a small soft-margin value: C =

0.01), the results fell short. For our test set of 210 Portuguese tweets, SVM behaved exactly as

kNN did, i.e., precision= 0, recall= 0, f-measure= 0.

There are two possible explanations for such a poor performance. The first is the fact that

there were so many different classes for either method to train. In addition, the bag-of-words

representation of the test data set was a very sparse matrix, with 210 documents (lines) and

over 69000 unique features (columns). This would make these space-vector oriented algorithms

highly ineffective.

The second explanation is, once again, the unbalanced nature of the training data set. When

dealing with unbalanced data sets, kNN completely ignores the minority classes and will often

mistakenly classify a tweet to the majority category.

60



6.4 Data Set III

The final data set used in this thesis is taken from TASS - the Workshop on Sentiment Analysis

at SEPLN. TASS is a experimental evaluation workshop for sentiment analysis and online rep-

utation analysis focused on the Spanish language, organized as a satellite event of the annual

SEPLN Conference.

The corpus contains over 70000 tweets, written in Spanish by nearly 200 well-known personali-

ties and celebrities of the world of politics, economy, communication, mass media and culture,

between November 2011 and March 2012.

Using the 2012 twitter data set of this competition, the Twitter Topic Fuzzy FingerPrint Al-

gorithm will be put to the test to see how it fares in classifying tweets into broad topics such

as “poĺıtica” (“politics”), “fútbol” (“soccer”), “literatura” (“literature”) or “entretenimiento”

(“entertainment”). In terms of the difference between Topic Classification and Topic Detection,

which was established in Chapter 2, this data set falls into the first category. Therefore, we are

attempting to see how this method adapts when tackling a related but yet intrinsically different

kind of problem

Each message of the corpus has been semi automatically assigned to one or several of these

topics (most messages are associated to just one topic, due to the short length of the text).

In the context of this work, we use the training set (file “general.train.xml”) to build the fin-

gerprint. Afterwards, we apply the method to the tweets in file “general.devel.xml” which are

categorized, so we can match its performance.

6.4.1 Training Set

The training set consists of 5775 tweets, in XML format, as shown in Figure 6.5. For the purpose

of this thesis, we will ignore the “sentiment” field and focus solely on user, content and topics.

6.4.2 Experiments and Results

The test data set consists of 1444 tweets, using the same format as figure 6.5.

6.4.2.1 Scenario A - NO Stemming and NO Stopword Removal

In this section, we consider the several scenarios that k (size of the fingerprint) and j (minimum

size of the tweet features) take neither stopword removal nor stemming is used. Please consider

Table 6.18.

61



<tweet >

<tweetid >142499355360903168 </ tweetid >

<user >sevillajordi </user >

<content ><![ CDATA[Un sistema económico q recorta dinero para

prestaciones sociales y refuerza con billón

y medio d euros a los bancos , no necesita

repensarse ?]]></content >

<date >2011 -12 -02 T08 :04:28 </date >

<lang >es </lang >

<sentiments >

<polarity ><value >P+</value ><type >AGREEMENT </type ></polarity >

</sentiments >

<topics >

<topic >economı́a </topic >

<topic >polı́tica </topic >

</topics >

</tweet >

Figure 6.5: XML format of the Training Set TASS tweets

A quick glance at these results clearly show that they are worse than those obtained with Data

Set I. For threshold= 0.5, there were even several “divide by zero” errors, due to inexistent True

of False Positive cases. As the threshold value decreases, no more such cases occur. The best

case scenario takes place when j = 4 and k = 250 (f −measure = 0.401). This is a consequence

of very low T2S2 values.

6.4.2.2 Scenario B - NO Stemming and YES Stopword Removal

In this section, we consider the several scenarios that k (size of the fingerprint) and j (minimum

size of the tweet features) stopwords are removed but stemming is not used.

In Scenario B, Table 6.19, performance is slightly better than in Scenario A, which reinforces

the importance of stopword removal. The best case scenario occurs for f-measure= 0.404 when

j = 1 and k = 250. However it is still below the performance achieved with Data Set I, due to

very small T2S2 values.

62



Table 6.18: Results for Data Set II - no stemming and no stopword removal

Threshold 0.5 Threshold 0.15 Threshold 0.10 Threshold 0.05

1 10 0.429 0.002 0.003 0.642 0.078 0.140 0.642 0.080 0.143 0.586 0.127 0.208

1 15 0.250 0.001 0.001 0.647 0.083 0.147 0.623 0.105 0.180 0.588 0.134 0.219

1 20 0.000 0.000 — 0.641 0.094 0.163 0.623 0.113 0.191 0.586 0.131 0.215

1 25 0.000 0.000 — 0.640 0.093 0.163 0.609 0.117 0.196 0.586 0.138 0.224

1 30 0.000 0.000 — 0.684 0.088 0.156 0.600 0.119 0.199 0.572 0.146 0.233

1 50 — 0.000 — 0.564 0.034 0.063 0.613 0.123 0.204 0.574 0.163 0.254

1 100 — 0.000 — 0.495 0.023 0.045 0.628 0.082 0.146 0.579 0.203 0.300

1 250 — 0.000 — 0.567 0.028 0.053 0.593 0.092 0.160 0.567 0.262 0.359

2 10 0.429 0.002 0.003 0.642 0.078 0.140 0.642 0.080 0.143 0.585 0.127 0.208

2 15 0.250 0.001 0.001 0.650 0.086 0.152 0.623 0.105 0.180 0.590 0.135 0.220

2 20 0.000 0.000 — 0.641 0.094 0.163 0.624 0.113 0.191 0.586 0.132 0.215

2 25 0.000 0.000 — 0.641 0.094 0.163 0.605 0.117 0.196 0.584 0.140 0.226

2 30 0.000 0.000 — 0.669 0.089 0.156 0.597 0.121 0.201 0.574 0.148 0.235

2 50 — 0.000 — 0.600 0.040 0.074 0.605 0.126 0.209 0.573 0.164 0.256

2 100 — 0.000 — 0.490 0.026 0.049 0.638 0.088 0.155 0.580 0.207 0.305

2 250 — 0.000 — 0.591 0.033 0.063 0.580 0.096 0.165 0.571 0.280 0.376

3 10 0.500 0.002 0.004 0.642 0.078 0.140 0.641 0.081 0.144 0.578 0.130 0.213

3 15 0.400 0.001 0.002 0.640 0.090 0.157 0.623 0.105 0.180 0.578 0.138 0.223

3 20 0.000 0.000 — 0.638 0.098 0.170 0.623 0.115 0.194 0.589 0.138 0.224

3 25 0.000 0.000 — 0.642 0.101 0.175 0.589 0.120 0.199 0.577 0.146 0.233

3 30 0.000 0.000 — 0.642 0.099 0.171 0.589 0.123 0.204 0.574 0.151 0.239

3 50 — 0.000 — 0.629 0.063 0.115 0.581 0.134 0.218 0.568 0.169 0.260

3 100 — 0.000 — 0.586 0.048 0.089 0.602 0.119 0.198 0.558 0.221 0.317

3 250 — 0.000 — 0.586 0.066 0.118 0.582 0.138 0.223 0.548 0.308 0.394

4 10 0.500 0.002 0.004 0.642 0.078 0.140 0.640 0.081 0.145 0.581 0.131 0.214

4 15 0.500 0.002 0.003 0.640 0.095 0.166 0.622 0.105 0.180 0.579 0.142 0.227

4 20 0.000 0.000 — 0.632 0.101 0.175 0.620 0.116 0.196 0.587 0.143 0.230

4 25 0.000 0.000 — 0.634 0.105 0.180 0.597 0.120 0.200 0.582 0.146 0.234

4 30 0.000 0.000 — 0.631 0.105 0.181 0.598 0.123 0.204 0.585 0.151 0.240

4 50 — 0.000 — 0.642 0.083 0.147 0.582 0.137 0.222 0.575 0.172 0.264

4 100 — 0.000 — 0.592 0.062 0.112 0.603 0.144 0.232 0.566 0.229 0.326

4 250 — 0.000 — 0.584 0.087 0.151 0.595 0.182 0.278 0.543 0.317 0.401

6.4.2.3 Scenario C - YES Stemming and NO Stopword Removal

In this section, we consider the several scenarios that k (size of the fingerprint) and j (minimum

size of the tweet features) stopwords are not removed but stemming used, Table 6.20.

The pattern is the same as with previous early analysis. Performance is much worse than

that obtained with Data Set I. Additionally, the results are exactly the same as Scenario A,

63



Table 6.19: Results for Data Set II - no stemming and with stopword removal

Threshold 0.5 Threshold 0.15 Threshold 0.10 Threshold 0.05

1 10 0.455 0.003 0.005 0.642 0.078 0.140 0.642 0.080 0.143 0.582 0.131 0.214

1 15 0.400 0.001 0.002 0.642 0.091 0.160 0.625 0.106 0.181 0.583 0.140 0.226

1 20 0.000 0.000 — 0.637 0.099 0.172 0.619 0.118 0.198 0.590 0.142 0.228

1 25 0.000 0.000 — 0.642 0.102 0.177 0.591 0.121 0.201 0.583 0.147 0.234

1 30 0.000 0.000 — 0.643 0.103 0.177 0.595 0.125 0.206 0.580 0.151 0.240

1 50 0.000 0.000 — 0.637 0.072 0.130 0.588 0.140 0.226 0.572 0.171 0.263

1 100 0.000 0.000 — 0.619 0.057 0.104 0.613 0.135 0.222 0.568 0.230 0.328

1 250 0.000 0.000 — 0.599 0.083 0.146 0.603 0.171 0.266 0.542 0.322 0.404

2 10 0.455 0.003 0.005 0.642 0.078 0.140 0.644 0.081 0.144 0.582 0.131 0.214

2 15 0.400 0.001 0.002 0.642 0.092 0.161 0.625 0.106 0.181 0.583 0.140 0.226

2 20 0.000 0.000 — 0.630 0.100 0.172 0.618 0.118 0.198 0.589 0.142 0.228

2 25 0.000 0.000 — 0.639 0.104 0.179 0.591 0.121 0.201 0.581 0.147 0.235

2 30 0.000 0.000 — 0.647 0.104 0.180 0.592 0.125 0.206 0.581 0.152 0.241

2 50 0.000 0.000 — 0.643 0.074 0.133 0.586 0.141 0.227 0.574 0.172 0.265

2 100 0.000 0.000 — 0.626 0.061 0.110 0.610 0.138 0.226 0.563 0.231 0.328

2 250 0.000 0.000 — 0.595 0.088 0.153 0.610 0.178 0.275 0.545 0.321 0.404

3 10 0.455 0.003 0.005 0.642 0.078 0.140 0.643 0.081 0.145 0.572 0.135 0.218

3 15 0.400 0.001 0.002 0.639 0.095 0.165 0.625 0.106 0.181 0.574 0.143 0.228

3 20 0.000 0.000 — 0.625 0.100 0.173 0.614 0.118 0.198 0.582 0.145 0.232

3 25 0.000 0.000 — 0.633 0.105 0.181 0.588 0.121 0.201 0.577 0.148 0.235

3 30 0.000 0.000 — 0.637 0.105 0.181 0.590 0.125 0.207 0.576 0.153 0.241

3 50 0.000 0.000 — 0.646 0.084 0.148 0.580 0.142 0.228 0.568 0.171 0.263

3 100 0.000 0.000 — 0.606 0.068 0.123 0.610 0.150 0.241 0.564 0.233 0.329

3 250 0.000 0.000 — 0.591 0.096 0.165 0.598 0.186 0.284 0.538 0.322 0.403

4 10 0.455 0.003 0.005 0.642 0.078 0.140 0.641 0.082 0.145 0.585 0.135 0.220

4 15 0.500 0.002 0.003 0.643 0.097 0.169 0.623 0.106 0.181 0.576 0.143 0.229

4 20 0.000 0.000 — 0.629 0.104 0.179 0.618 0.118 0.198 0.586 0.147 0.235

4 25 0.000 0.000 — 0.631 0.109 0.186 0.597 0.120 0.200 0.582 0.148 0.236

4 30 0.000 0.000 — 0.630 0.107 0.184 0.596 0.125 0.207 0.584 0.152 0.241

4 50 0.000 0.000 — 0.644 0.090 0.158 0.582 0.142 0.228 0.573 0.172 0.265

4 100 0.000 0.000 — 0.605 0.073 0.131 0.604 0.156 0.248 0.565 0.234 0.331

4 250 0.000 0.000 — 0.589 0.101 0.172 0.591 0.200 0.299 0.537 0.322 0.402

64



Table 6.20: Results for Data Set II - with stemming and no stopword removal

Threshold 0.5 Threshold 0.15 Threshold 0.10 Threshold 0.05

1 10 0.429 0.002 0.003 0.642 0.078 0.140 0.642 0.080 0.143 0.586 0.127 0.208

1 15 0.250 0.001 0.001 0.647 0.083 0.147 0.623 0.105 0.180 0.588 0.134 0.219

1 20 0.000 0.000 — 0.641 0.094 0.163 0.623 0.113 0.191 0.586 0.131 0.215

1 25 0.000 0.000 — 0.640 0.093 0.163 0.609 0.117 0.196 0.586 0.138 0.224

1 30 0.000 0.000 — 0.684 0.088 0.156 0.600 0.119 0.199 0.572 0.146 0.233

1 50 — 0.000 — 0.564 0.034 0.063 0.613 0.123 0.204 0.574 0.163 0.254

1 100 — 0.000 — 0.495 0.023 0.045 0.628 0.082 0.146 0.579 0.203 0.300

1 250 — 0.000 — 0.567 0.028 0.053 0.593 0.092 0.160 0.567 0.262 0.359

2 10 0.429 0.002 0.003 0.642 0.078 0.140 0.642 0.080 0.143 0.585 0.127 0.208

2 15 0.250 0.001 0.001 0.650 0.086 0.152 0.623 0.105 0.180 0.590 0.135 0.220

2 20 0.000 0.000 — 0.641 0.094 0.163 0.624 0.113 0.191 0.586 0.132 0.215

2 25 0.000 0.000 — 0.641 0.094 0.163 0.605 0.117 0.196 0.584 0.140 0.226

2 30 0.000 0.000 — 0.669 0.089 0.156 0.597 0.121 0.201 0.574 0.148 0.235

2 50 — 0.000 — 0.600 0.040 0.074 0.605 0.126 0.209 0.573 0.164 0.256

2 100 — 0.000 — 0.490 0.026 0.049 0.638 0.088 0.155 0.580 0.207 0.305

2 250 — 0.000 — 0.591 0.033 0.063 0.580 0.096 0.165 0.571 0.280 0.376

3 10 0.500 0.002 0.004 0.642 0.078 0.140 0.641 0.081 0.144 0.578 0.130 0.213

3 15 0.400 0.001 0.002 0.640 0.090 0.157 0.623 0.105 0.180 0.578 0.138 0.223

3 20 0.000 0.000 — 0.638 0.098 0.170 0.623 0.115 0.194 0.589 0.138 0.224

3 25 0.000 0.000 — 0.642 0.101 0.175 0.589 0.120 0.199 0.577 0.146 0.233

3 30 0.000 0.000 — 0.642 0.099 0.171 0.589 0.123 0.204 0.574 0.151 0.239

3 50 — 0.000 — 0.629 0.063 0.115 0.581 0.134 0.218 0.568 0.169 0.260

3 100 — 0.000 — 0.586 0.048 0.089 0.602 0.119 0.198 0.558 0.221 0.317

3 250 — 0.000 — 0.586 0.066 0.118 0.582 0.138 0.223 0.548 0.308 0.394

4 10 0.500 0.002 0.004 0.642 0.078 0.140 0.640 0.081 0.145 0.581 0.131 0.214

4 15 0.500 0.002 0.003 0.640 0.095 0.166 0.622 0.105 0.180 0.579 0.142 0.227

4 20 0.000 0.000 — 0.632 0.101 0.175 0.620 0.116 0.196 0.587 0.143 0.230

4 25 0.000 0.000 — 0.634 0.105 0.180 0.597 0.120 0.200 0.582 0.146 0.234

4 30 0.000 0.000 — 0.631 0.105 0.181 0.598 0.123 0.204 0.585 0.151 0.240

4 50 — 0.000 — 0.642 0.083 0.147 0.582 0.137 0.222 0.575 0.172 0.264

4 100 — 0.000 — 0.592 0.062 0.112 0.603 0.144 0.232 0.566 0.229 0.326

4 250 — 0.000 — 0.584 0.087 0.151 0.595 0.182 0.278 0.543 0.317 0.401

65



further reinforcing the previous conclusion that stemming offers no value for Twitter Topic

Fuzzy Fingerprint.

6.4.2.4 Scenario D - YES Stemming and YES Stopword Removal

In this section, we consider the several scenarios that k (size of the fingerprint) and j (minimum

size of the tweet features) stopwords are removed and stemming used.

Please consider Table 6.21. Once again, performance is below par, when compared to Data Set

I results and Scenario D provides the same results as Scenario B. The best case scenario occurs

when f-measure= 0.404, for j = 1 and k = 250.

6.4.3 Result Analysis

At this point, it is obvious that the Twitter Topic Fuzzy Fingerprint algorithm performed much

worse for Data Set II. This is a consequence of a few characteristics of this particular Data Set

and its goal.

Firstly, the goal of TASS was to categorize the tweets according to broad subjects (politics,

music, football,etc...) as opposed to specific topics such as the trends in Data Set I. This goes

back to the idea put forth in Chapter 2, that there is a difference between Topic Classification and

Topic Detection. The Twitter Topic Fuzzy Fingerprint clearly performs better when considering

the latter.

Secondly, the quality of the data itself is, in our opinion, questionable. Proof of this theory

can be shown with the following two tweets from user “David Busta” (spanish musician), taken

from the test set and that were expected to be classified as “música”:

Buenas Noches! Y dulces sueños

Buenos d́ıas familia!!! Os deseo un feliz d́ıa!;-)

These are hardly music related tweets beyond the fact that they were posted by musician David

Bustamante. The only real word that will match between these tweets and the “música” fin-

gerprint is the username itself, which will result in a very low T2S2 score. This example is

symptomatic of the quality of the data and also relates to the previous point that Topic Classi-

fication is too broad for the context of Tweet Topic Detection.

Thirdly, T2S2 values are so low that the threshold value had to be brought down all the way

to 0.05. It is fair to assume that higher values of k and an even lower threshold value might

66



Table 6.21: Results for Data Set II - with stemming and with stopword removal

Threshold 0.5 Threshold 0.15 Threshold 0.10 Threshold 0.05

1 10 0.455 0.003 0.005 0.642 0.078 0.140 0.642 0.080 0.143 0.582 0.131 0.214

1 15 0.400 0.001 0.002 0.642 0.091 0.160 0.625 0.106 0.181 0.583 0.140 0.226

1 20 0.000 0.000 — 0.637 0.099 0.172 0.619 0.118 0.198 0.590 0.142 0.228

1 25 0.000 0.000 — 0.642 0.102 0.177 0.591 0.121 0.201 0.583 0.147 0.234

1 30 0.000 0.000 — 0.643 0.103 0.177 0.595 0.125 0.206 0.580 0.151 0.240

1 50 0.000 0.000 — 0.637 0.072 0.130 0.588 0.140 0.226 0.572 0.171 0.263

1 100 0.000 0.000 — 0.619 0.057 0.104 0.613 0.135 0.222 0.568 0.230 0.328

1 250 0.000 0.000 — 0.599 0.083 0.146 0.603 0.171 0.266 0.542 0.322 0.404

2 10 0.455 0.003 0.005 0.642 0.078 0.140 0.644 0.081 0.144 0.582 0.131 0.214

2 15 0.400 0.001 0.002 0.642 0.092 0.161 0.625 0.106 0.181 0.583 0.140 0.226

2 20 0.000 0.000 — 0.630 0.100 0.172 0.618 0.118 0.198 0.589 0.142 0.228

2 25 0.000 0.000 — 0.639 0.104 0.179 0.591 0.121 0.201 0.581 0.147 0.235

2 30 0.000 0.000 — 0.647 0.104 0.180 0.592 0.125 0.206 0.581 0.152 0.241

2 50 0.000 0.000 — 0.643 0.074 0.133 0.586 0.141 0.227 0.574 0.172 0.265

2 100 0.000 0.000 — 0.626 0.061 0.110 0.610 0.138 0.226 0.563 0.231 0.328

2 250 0.000 0.000 — 0.595 0.088 0.153 0.610 0.178 0.275 0.545 0.321 0.404

3 10 0.455 0.003 0.005 0.642 0.078 0.140 0.643 0.081 0.145 0.572 0.135 0.218

3 15 0.400 0.001 0.002 0.639 0.095 0.165 0.625 0.106 0.181 0.574 0.143 0.228

3 20 0.000 0.000 — 0.625 0.100 0.173 0.614 0.118 0.198 0.582 0.145 0.232

3 25 0.000 0.000 — 0.633 0.105 0.181 0.588 0.121 0.201 0.577 0.148 0.235

3 30 0.000 0.000 — 0.637 0.105 0.181 0.590 0.125 0.207 0.576 0.153 0.241

3 50 0.000 0.000 — 0.646 0.084 0.148 0.580 0.142 0.228 0.568 0.171 0.263

3 100 0.000 0.000 — 0.606 0.068 0.123 0.610 0.150 0.241 0.564 0.233 0.329

3 250 0.000 0.000 — 0.591 0.096 0.165 0.598 0.186 0.284 0.538 0.322 0.403

4 10 0.455 0.003 0.005 0.642 0.078 0.140 0.641 0.082 0.145 0.585 0.135 0.220

4 15 0.500 0.002 0.003 0.643 0.097 0.169 0.623 0.106 0.181 0.576 0.143 0.229

4 20 0.000 0.000 — 0.629 0.104 0.179 0.618 0.118 0.198 0.586 0.147 0.235

4 25 0.000 0.000 — 0.631 0.109 0.186 0.597 0.120 0.200 0.582 0.148 0.236

4 30 0.000 0.000 — 0.630 0.107 0.184 0.596 0.125 0.207 0.584 0.152 0.241

4 50 0.000 0.000 — 0.644 0.090 0.158 0.582 0.142 0.228 0.573 0.172 0.265

4 100 0.000 0.000 — 0.605 0.073 0.131 0.604 0.156 0.248 0.565 0.234 0.331

4 250 0.000 0.000 — 0.589 0.101 0.172 0.591 0.200 0.299 0.537 0.322 0.402

67



provide better results. However, given the previously mentioned contextual differences, it felt

ineffective to further pursue that approach.

Lastly, according to [29], the best performing algorithm with the TASS development data set

achieved only precision=0.59, recall= 0.69 and f-measure= 0.634. The results in [29] were

achieved through a well tuned method aimed at the specificity of this data set, while we simply

used a novel method perfected from a different context (Data Set I). Should we fine tune the

Twitter Topic Fuzzy Fingerprints to perform with this data, better results could probably be

achieved, as it is also a much lighter processing method than the one presented in [29].

68



Chapter 7

Conclusion

In this thesis, we proposed a novel method in Tweet Topic Detection - the Twitter Topic Fuzzy

Fingerprint.

Inspired from Nuno Homem’s and João Carvalho’s work in [27], we build a fingerprint for

the top Twitter trends of a given day and then set out to attempt a detect that topic in the

approximately 85% of tweets that do not have any hashtags.

With an (assumedly) short test set, the algorithm provided very positive results and primes

by both its speed and performance, in comparison to other well known classification methods

(kNN and SVM). When considering a small fingerprint (top 20 keywords), without removing

stopwords nor performing stemming and all words with 3 characters or more being kept in the

corpus, an f-measure value of 0.833 was achieved for a decision threshold= 0.10.

The main setback of the Twitter Topic Fuzzy Fingerprint is that it is only really effective within

the specific context of the Topic/Trend Detection. If broader categories are considered, such as

those in Data Set III, the performance will drop considerately.

7.1 Future Work

There are several interesting tasks that can spawn from this thesis, in order to further attempt

to improve the current Twitter Topic Fuzzy Fingerprint method.

On the one hand, the inclusion of the Filtered Space-Saving Algorithm used in the original

method could provide faster trend detection, although in detriment of performance. On the

other hand, new membership functions may be proposed to either enhance performance or

simplify calculations and thus improve the algorithms quickness.

The T2S2 calculation, as it stands in Eq. (5.5), results in normalized values but with a very

low threshold value (at 0.10 it decides that the tweet belongs to the topic). An overhaul of this

69



function should be considered, in order to try and reach a higher threshold value, such as 0.5.

It should also be interesting to study how many tweets per trend are required for the training

set to have, so that performance is optimized. Should fewer tweets be necessary, it could further

validate the use of the Twitter Topic Fuzzy Fingerprint as a real-time classifier.

Given that trending topics will often relay some worldwide important events, it may also provide

value to create the fingerprint from other sources such as blogs and news agencies sites. This

may enrich the fingerprint enough so that better results are achieved when detecting the topic

of a tweet.

70



Bibliography

[1] K. Wicker, https://blog.twitter.com/2013/celebrating-twitter7.

[2] A. Mazzia and J. Juett, “Suggesting hashtags on twitter,” 2010.

[3] R. Feldman and J. Sanger, Text Mining Handbook: Advanced Approaches in Analyzing

Unstructured Data. New York, NY, USA: Cambridge University Press, 2006.

[4] M. Konchady, Text Mining Application Programming. Charles River Media, 2006.

[5] A. Rajaraman, J. Leskovec, and J. Ullman, Mining of Massive Datasets. Cambridge Uni-

versity Press, 2011.

[6] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Information Retrieval. New

York, NY, USA: Cambridge University Press, 2008.

[7] Y. Yang and X. Liu, “A re-examination of text categorization methods,” in Proceedings of

the 22Nd Annual International ACM SIGIR Conference on Research and Development in

Information Retrieval, SIGIR ’99, (New York, NY, USA), pp. 42–49, ACM, 1999.

[8] J. Zhang and I. Mani, “KNN Approach to Unbalanced Data Distributions: A Case Study

Involving Information Extraction,” in Proceedings of the ICML’2003 Workshop on Learning

from Imbalanced Datasets, 2003.

[9] A. B. Hur and J. Weston, “A User’s Guide to Support Vector Machines,” pp. 1–18.

[10] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE Transactions on Knowl-

edge and Data Engineering, vol. 21, no. 9, pp. 1263–1284, 2009.

[11] M. Cataldi, L. Di Caro, and C. Schifanella, “Emerging topic detection on twitter based on

temporal and social terms evaluation,” in Proceedings of the Tenth International Workshop

on Multimedia Data Mining, MDMKDD ’10, (New York, NY, USA), pp. 4:1–4:10, ACM,

2010.

71



[12] M. Mathioudakis and N. Koudas, “Twittermonitor: Trend detection over the twitter

stream,” in Proceedings of the 2010 ACM SIGMOD International Conference on Man-

agement of Data, SIGMOD ’10, (New York, NY, USA), pp. 1155–1158, ACM, 2010.

[13] S. P. Kasiviswanathan, P. Melville, A. Banerjee, and V. Sindhwani, “Emerging topic detec-

tion using dictionary learning,” in Proceedings of the 20th ACM International Conference on

Information and Knowledge Management, CIKM ’11, (New York, NY, USA), pp. 745–754,

ACM, 2011.

[14] A. Saha and V. Sindhwani, “Learning evolving and emerging topics in social media: A

dynamic nmf approach with temporal regularization,” in Proceedings of the Fifth ACM

International Conference on Web Search and Data Mining, WSDM ’12, (New York, NY,

USA), pp. 693–702, ACM, 2012.

[15] J. Weng and B.-S. Lee, “Event detection in twitter,” in ICWSM, 2011.

[16] K. Lee, D. Palsetia, R. Narayanan, M. M. A. Patwary, A. Agrawal, and A. Choudhary,

“Twitter trending topic classification,” in Proceedings of the 2011 IEEE 11th International

Conference on Data Mining Workshops, ICDMW ’11, (Washington, DC, USA), pp. 251–

258, IEEE Computer Society, 2011.

[17] J. Sankaranarayanan, H. Samet, B. E. Teitler, M. D. Lieberman, and J. Sperling, “Twit-

terstand: News in tweets,” in Proceedings of the 17th ACM SIGSPATIAL International

Conference on Advances in Geographic Information Systems, GIS ’09, (New York, NY,

USA), pp. 42–51, ACM, 2009.

[18] M. Cheong and V. Lee, “Integrating web-based intelligence retrieval and decision-making

from the twitter trends knowledge base,” in SWSM ’09: Proceeding of the 2nd ACM work-

shop on Social web search and mining, (New York, NY, USA), pp. 1–8, ACM, 2009.

[19] https://dev.twitter.com/discussions/6789.

[20] A. Roomann-Kurrik, Introducing new metadata for Tweets -

https://dev.twitter.com/blog/introducing-new-metadata-for-tweets.

[21] To trend or not to trend - https://blog.twitter.com/2010/trend-or-not-trend.

[22] Natural Language Toolkit - http://nltk.org/.

[23] M. Porter, “An algorithm for suffix stripping,” Program: electronic library and information

systems, vol. 14, no. 3, pp. 130–137, 1980.

72



[24] C. Horn, “Analysis and classification of twitter messages,” 2010.

[25] J. P. Carvalho and L. Coheur, “Introducing uws - a fuzzy based word similarity function

with good discrimination capability: Preliminary results,” in FUZZ-IEEE, pp. 1–8, 2013.

[26] http://mwh.geek.nz/2009/04/26/python-damerau-levenshtein-distance/.

[27] N. Homem and J. Carvalho, “Authorship identification and author fuzzy fingerprints,”

in 30th Annual Conference of the North American Fuzzy Information Processing Society,

NAFIPS2011, 2011.

[28] Weka - http://www.cs.waikato.ac.nz/ml/weka/.

[29] F. B. y Ricardo Ribeiro, “Sentiment analysis and topic classification based on binary max-

imum entropy classifiers,” Procesamiento del Lenguaje Natural, vol. 50, no. 0, 2012.

73



74



Appendix A

Data Sets Distribution

Table A.1: Training Set Trend Distribution

Top Trend #tweets

#askjennette 136

#assistacaradesantarestart 12

#b1a41stwin 255

#finalcopatve 30

#gobiernodecallerevolucionpopular 498

#gtmo17 17

#ilovegodbecause 989

#jedwardtvpov 104

#mtvonedirection 145

#muriovidela 128

#mydemitop3songs 497

#nowplaying 7959

#obrigadogioantonelliealexandrenero 198

#replacesonglyricswithnutsack 532

#thevampstwitcam 1

#tropaunidaconmaduro 6296

#ultimovoo 178

#vazajorge 350

#wecantstop 1590

#welcometoitalyguys 302

#whataboutlove 552

75



Table A.2: Test Set Trend Distribution
Top Trend #tweets

#askjennette 22

#assistacaradesantarestart 5

#b1a41stwin 84

#finalcopatve 56

#gobiernodecallerevolucionpopular 28

#gtmo17 9

#ilovegodbecause 10

#jedwardtvpov 9

#mtvonedirection 20

#muriovidela 30

#mydemitop3songs 8

#nowplaying 65

#obrigadogioantonelliealexandrenero 40

#replacesonglyricswithnutsack 2

#thevampstwitcam 3

#tropaunidaconmaduro 15

#ultimovoo 51

#vazajorge 18

#wecantstop 48

#welcometoitalyguys 6

#whataboutlove 56

76



Appendix B

Lists of Words

B.1 English Stopwords

i, me, my, myself, we, our, ours, ourselves, you, your, yours, yourself, yourselves, he, him, his,

himself, she, her, hers, herself, it, its, itself, they, them, their, theirs, themselves, what, which,

who, whom, this, that, these, those, am, is, are, was, were, be, been, being, have, has, had,

having, do, does, did, doing, a, an, the, and, but, if, or, because, as, until, while, of, at, by, for,

with, about, against, between, into, through, during, before, after, above, below, to, from, up,

down, in, out, on, off, over, under, again, further, then, once, here, there, when, where, why,

how, all, any, both, each, few, more, most, other, some, such, no, nor, not, only, own, same, so,

than, too, very, s, t, can, will, just, don, should, now

B.2 Spanish Stopwords

de, la, que, el, en, y, a, los, del, se, las, por, un, para, con, no, una, su, al, lo, como, más, pero,

sus, le, ya, o, este, śı, porque, esta, entre, cuando, muy, sin, sobre, también, me, hasta, hay,

donde, quien, desde, todo, nos, durante, todos, uno, les, ni, contra, otros, ese, eso, ante, ellos,

e, esto, mı́, antes, algunos, qué, unos, yo, otro, otras, otra, él, tanto, esa, estos, mucho, quienes,

nada, muchos, cual, poco, ella, estar, estas, algunas, algo, nosotros, mi, mis, tú, te, ti, tu, tus, el-

las, nosotras, vosostros, vosostras, os, mı́o, mı́a, mı́os, mı́as, tuyo, tuya, tuyos, tuyas, suyo, suya,

suyos, suyas, nuestro, nuestra, nuestros, nuestras, vuestro, vuestra, vuestros, vuestras, esos,

esas, estoy, estás, está, estamos, estáis, están, esté, estés, estemos, estéis, estén, estaré, estarás,

estará, estaremos, estaréis, estarán, estaŕıa, estaŕıas, estaŕıamos, estaŕıais, estaŕıan, estaba, es-

tabas, estábamos, estabais, estaban, estuve, estuviste, estuvo, estuvimos, estuvisteis, estuvieron,

estuviera, estuvieras, estuviéramos, estuvierais, estuvieran, estuviese, estuvieses, estuviésemos,

estuvieseis, estuviesen, estando, estado, estada, estados, estadas, estad, he, has, ha, hemos,

77



habéis, han, haya, hayas, hayamos, hayáis, hayan, habré, habrás, habrá, habremos, habréis,

habrán, habŕıa, habŕıas, habŕıamos, habŕıais, habŕıan, hab́ıa, hab́ıas, hab́ıamos, hab́ıais, hab́ıan,

hube, hubiste, hubo, hubimos, hubisteis, hubieron, hubiera, hubieras, hubiéramos, hubierais, hu-

bieran, hubiese, hubieses, hubiésemos, hubieseis, hubiesen, habiendo, habido, habida, habidos,

habidas, soy, eres, es, somos, sois, son, sea, seas, seamos, seáis, sean, seré, serás, será, seremos,

seréis, serán, seŕıa, seŕıas, seŕıamos, seŕıais, seŕıan, era, eras, éramos, erais, eran, fui, fuiste, fue,

fuimos, fuisteis, fueron, fuera, fueras, fuéramos, fuerais, fueran, fuese, fueses, fuésemos, fueseis,

fuesen, sintiendo, sentido, sentida, sentidos, sentidas, siente, sentid, tengo, tienes, tiene, tenemos,

tenéis, tienen, tenga, tengas, tengamos, tengáis, tengan, tendré, tendrás, tendrá, tendremos,

tendréis, tendrán, tendŕıa, tendŕıas, tendŕıamos, tendŕıais, tendŕıan, teńıa, teńıas, teńıamos,

teńıais, teńıan, tuve, tuviste, tuvo, tuvimos, tuvisteis, tuvieron, tuviera, tuvieras, tuviéramos,

tuvierais, tuvieran, tuviese, tuvieses, tuviésemos, tuvieseis, tuviesen, teniendo, tenido, tenida,

tenidos, tenidas, tened

B.3 Portuguese Stopwords

de, a, o, que, e, do, da, em, um, para, com, não, uma, os, no, se, na, por, mais, as, dos, como,

mas, ao, ele, das, à, seu, sua, ou, quando, muito, nos, já, eu, também, só, pelo, pela, até, isso,

ela, entre, depois, sem, mesmo, aos, seus, quem, nas, me, esse, eles, você, essa, num, nem,

suas, meu, às, minha, numa, pelos, elas, qual, nós, lhe, deles, essas, esses, pelas, este, dele,

tu, te, vocês, vos, lhes, meus, minhas, teu, tua, teus, tuas, nosso, nossa, nossos, nossas, dela,

delas, esta, estes, estas, aquele, aquela, aqueles, aquelas, isto, aquilo, estou, está, estamos, estão,

estive, esteve, estivemos, estiveram, estava, estávamos, estavam, estivera, estivéramos, esteja,

estejamos, estejam, estivesse, estivéssemos, estivessem, estiver, estivermos, estiverem, hei, há,

havemos, hão, houve, houvemos, houveram, houvera, houvéramos, haja, hajamos, hajam, hou-

vesse, houvéssemos, houvessem, houver, houvermos, houverem, houverei, houverá, houveremos,

houverão, houveria, houveŕıamos, houveriam, sou, somos, são, era, éramos, eram, fui, foi, fomos,

foram, fora, fôramos, seja, sejamos, sejam, fosse, fôssemos, fossem, for, formos, forem, serei,

será, seremos, serão, seria, seŕıamos, seriam, tenho, tem, temos, tém, tinha, t́ınhamos, tinham,

tive, teve, tivemos, tiveram, tivera, tivéramos, tenha, tenhamos, tenham, tivesse, tivéssemos,

tivessem, tiver, tivermos, tiverem, terei, terá, teremos, terão, teria, teŕıamos, teriam

78


