
ORIGINAL PAPER

Finding top-k elements in a time-sliding window

Nuno Homem • Joao Paulo Carvalho

Received: 31 August 2010 / Accepted: 27 October 2010

� Springer-Verlag 2010

Abstract Identifying the top-k most frequent elements is

one of the many problems associated with data streams

analysis. It is a well-known and difficult problem, espe-

cially if the analysis is to be performed and maintained up

to date in near real time. Analyzing data streams in time

sliding window model is of particular interest as only the

most recent, more relevant events are considered.

Approximate answers are usually adequate when dealing

with this problem. This paper presents a new and innova-

tive algorithm, the Filtered Space-Saving with Sliding

Window Algorithm (FSW) that addresses this problem by

introducing in the Filtered Space Saving (FSS) algorithm

an approximated time sliding window counter. The algo-

rithm provides the top-k list of elements, their frequency

and an error estimate for each frequency value within the

sliding window. It provides strong guarantees on the

results, depending on the elements real frequencies.

Experimental results detail performance on real life cases.

Keywords Approximate algorithms � Top-k algorithms �
Most frequent � Estimation � Data stream frequencies �
Sliding window

1 Introduction

Identifying the top-k most frequent elements in a data

stream is a very relevant problem in several domains, since

top-k elements are necessary for a large number of dif-

ferent applications. Examples include; traffic shaping

systems that control IP quality of service (which require

information on the higher-traffic sources and destina-

tions), one-to-one marketing applications (finding the

most frequently requested products) or fraud detection

systems (finding the most heavily used services). Finding

the most frequent elements in a given period can be used

to model a system, and tracking the changes in most

frequent elements can model the system evolution. In an

evolving system, the most frequent events produced by

an individual or system may describe, or help to

describe, its behavior in a dynamically changing and

evolving environment.

Applications such as IP session logging, telecommuni-

cation records, financial transactions or real time sensor

data, generate so much information that analysis needs to

be done on the arriving data in near-real time. The data

stream model has been widely used as a computational

model for such applications. In a data stream, a huge

number of events, possibly infinite, are observed, and

storage of the entire set is not viable. As a result, only a set

of summaries or aggregates may be kept; relevant infor-

mation is extracted and transient or less significant data is

discarded. Since summaries or synopsis must be created in

a single pass, optimizing the process is therefore critical.

Fortunately, approximate answers may be sufficient in

many situations.

In many domains, individual or system behavior does

not remain static but evolves over time; the sliding window

model will be considered by making the assumption that

behavior is stable during the time window. In the sliding

window model only the last N elements or the elements

observed during the last period of time T are considered.

Usually the most recent data is the most interesting. In

N. Homem (&) � J. P. Carvalho

TULisbon, Instituto Superior Técnico, INESC-ID,

R. Alves Redol 9, 1000-029 Lisbon, Portugal

e-mail: nuno.homem@hotmail.com

J. P. Carvalho

e-mail: joao.carvalho@inesc-id.pt

123

Evolving Systems

DOI 10.1007/s12530-010-9020-z

many cases, recent data can be used to predict future

behavior or trends. In this paper, one will consider the more

general case of the last elements observed during a period

of time T, as the N last elements problem can be easily

addressed by considering that each element arrives at a

fixed rate N/T.

Classical exact top-k algorithm requires the full list of

distinct elements to be kept. The list is always searched to

insert new elements or to update existing element counters.

Exact top-k algorithm may require huge amounts of

memory. The problem is even worse when a sliding win-

dow view is required, since events out of the window must

be removed from the list. Exact algorithm requires the full

list of events to be stored.

This work proposes a new algorithm for identifying the

approximate top-k elements and their frequencies while

providing an error estimate for each frequency. The Fil-

tered Space-Saving with Sliding Window (FSW) algorithm

is a novel approach that introduces the sliding model

constraints into the top-k problem. It uses an approximation

to a T time sliding window by considering p basic sub-

windows of fixed duration. Each of the basic sub-windows

will have a fixed start and end time. When a basic sub-

window expires, a new one will replace it. The events

observed in the expired window will no longer be active or

contribute to the results. Although this introduces a

‘‘jumping’’ sliding window, the approximation is good for

most purposes.

The algorithm gives strong guarantees on the inclusion

of elements in the list depending on their real frequency.

Since the algorithm provides an error estimate for each

frequency, it also provides the possibility to control the

quality of the estimate.

The algorithm is innovative as it builds on Filtered

Space Saving (FSS) algorithm (Homem and Carvalho

2010b) and introduces the time dimension into the results.

FSS presents the best known performance in approximate

top-k algorithms; it provides strong error guarantees on the

error estimate, order of elements and inclusion of elements

in the list depending on their real frequency. FSS also

provides stochastic bounds on the error and expected error

estimates.

2 Relation with previous work

To solve the unrestricted top-k problem with reasonable

resources, approximate algorithms have been proposed.

Those algorithms can roughly be divided into two classes:

Counter based techniques and Sketch based techniques.

Books such as (Aggarwal 2007) and (Muthukrishnan 2005)

present many of the existing algorithms and data structures

to handle data streams.

2.1 Top-k counter based techniques

Some considerable work has been done in the unrestricted

top-k problem. Metwally et al. (2005) proposed the Space-

Saving algorithm. Space-Saving underlying idea is to

monitor only a pre-defined number of m elements and their

associated counters. Counters on each element are updated

to reflect the maximum possible number of times an ele-

ment has been observed and the error that might be

involved in that estimate. If an element that is already

being monitored occurs again, the counter for the fre-

quency estimate is incremented. If the element is not cur-

rently monitored it is always added to the list. If the

maximum number of elements has been reached, the ele-

ment with the lower estimate of possible occurrences is

dropped. The new element estimate error is set to the

estimate of frequency of the dropped element. The new

element frequency estimate equal to the error plus 1.

The Space-Saving algorithm will keep in the list all the

elements that may have occurred at least the new estimate

error value (or the last dropped element estimate) of times.

This ensures that no false negatives are generated but

allows for false positives. Elements with low frequencies

that are observed in the end of the data stream have higher

probabilities of being present in the list.

Demaine et al. (2002) presented a deterministic algo-

rithm to answer the e-approximate frequent problem with-

out making any assumption on the distribution of the item

frequencies. Although related, frequent and top-k problems

are distinct. In the frequent elements problem the threshold

is given a priori and in many cases the relative frequencies

of each element are not relevant. The algorithm is simple

and elegant: it needs 1/e simple counters to count the items

in the stream. A counter is used for each possible item and

initialized to 0. When a new item is read, the counter is

incremented, and if after the increment there are more than

1/e counters with value greater than 0, each of these coun-

ters will be decremented once. When all the N elements in

the data stream are processed, the set of items whose

counters have value at least (h - e)N are returned, with

h the given threshold.

Metwally et al. (2005) provide in a comparison

between several algorithms such as Lossy Counting

(Manku and Motwani 2002), Probabilistic Lossy Counting

(Dimitropoulos et al. 2008) and Frequent (Demaine et al.

2002).

2.2 Top-k sketch based techniques

Sketch-based algorithms use bitmap counters in order to

provide a better estimate of frequencies for all elements.

Each element is hashed into one or more values that are

used to index the counters to update. Since the hash

Evolving Systems

123

function can generate collisions, there is always a possible

error. Keeping a large set of counters to minimize collision

probability leads to a higher memory footprint when com-

paring with Space-Saving algorithm. Additionally, the

entire bitmap counter needs to be scanned and elements

sorted to answer the query. Some algorithms like GroupTest

(Cormode and Muthukrishnan 2003) do not provide infor-

mation about frequencies or relative order. Multistage filters

were proposed as an alternative in (Estan and Varghese

2003) but present the same problems. Other interesting

algorithms that can be used on update streams, not sup-

porting insertion and delete operations, were presented in

(Ganguly 2003), allowing top-k element identification with

their respective frequencies with a specified probability.

Overviews, comparative summaries and experimental

evaluation of some of the described algorithms were pre-

sented in (Manerikar and Palpanas 2009) and (Cormode

and Hadjieleftheriou 2010).

2.3 Top-k mixed techniques

The Filtered Space-Saving (FSS) algorithm was initially

presented by the authors in (Homem and Carvalho 2010a)

and extended in (Homem and Carvalho 2010b), and merges

the two distinct approaches for top-k algorithms. It

improves Space-Saving (Metwally et al. 2005) quite sig-

nificantly by narrowing down the number of required

counters, update operations and the error associated with

the frequency estimate.

FSS uses a hashed bitmap counter with h cells to filter

and minimize updates on the monitored elements list and to

better estimate the error associated with each element.

Instead of using a single error estimate value, it uses an

error estimate dependent on the hash counter. This allows

for better estimates by using the maximum possible error

for that particular hash value, instead of a global value.

Although an additional bitmap counter has to be kept, it

reduces the number of elements in the list needed to ensure

high quality top-k answers. It will also reduce the number

of list updates. The conjunction of the bitmap counter with

the list of elements, minimizes the collision problem of

most sketch-based algorithms.

The bitmap counter size depends on the number of

k elements to be retrieved and not on the number of distinct

elements of the stream, which is usually much higher. The

bitmap counter cells hold ai, the maximum error associated

with elements with hash i. Figure 1 presents a block dia-

gram of the FSS algorithm with the two storage elements,

bitmap counter with h cells and the monitored list with

m elements.

When a new value is received, the hash is calculated and

the bitmap counter is verified. If there are already moni-

tored elements with that same hash, the list is searched to

see if this particular element is already there. If the element

is in the list, then the estimate count fj is incremented;

otherwise, the element is checked to see if it should be

added.

The maximum estimated error of the algorithm, l, is the

minimum of the estimate counts in the list. While there are

free elements in the list, l is set to 0. A new element will be

inserted into the list if ai ? 1 C l. The new element is

included in the monitored with an estimate of ai ? 1.

If the observed element is not to be included in the list,

then ai is incremented. In fact the value ai stands for the

number of elements with hash value i that have not been

counted in the monitored list. It is essentially the maximum

number of times that an element with this hash value could

have been observed while not in the list.

If the list has exceeded its maximum allowed size, then

the element with the lower estimate is removed. When an

element is removed, the corresponding bitmap counter cell

is updated and the error for the elements with hash

i becomes equal to the estimate of the removed value,

ai = fj. When h = 1 FSS is exactly the Space-Saving

algorithm.

2.4 Sliding windows algorithms

Solving the top-k problem over a sliding window is,

however, more complex and has been less studied. Unre-

stricted top-k algorithms do not have obvious extensions to

the sliding window model. The critical problem is that

expired elements must be discounted, meaning that some

α i

ci

h-121 h

•)x(hx

1

vj fj ej

m

Monitored List

Bitmap Counter

Fig. 1 FSS algorithm diagram

Evolving Systems

123

information has to be stored about what has been received

during the entire window.

The problem of maintaining statistics on data streams

over a sliding window has been presented by Datar et al.

(2002). This seminal paper presented memory optimal

algorithms for maintaining statistics such as count, sum of

positive integers, average, etc. Babcock et al. (2003) extend

their work in with algorithms for variance and k-medians.

Algorithms that provide approximate histograms are a

basic building block for many of the top-k or frequent

elements algorithms for sliding windows.

Datar et al. (2002) presented the exponential histogram

(EH). Their approach toward solving the counting problem

in a sliding window is to maintain a histogram that records

the timestamp of selected 1’s that are active, i.e., within the

sliding window. Timestamps are maintained in buckets

each representing a given number of 1’s. If the timestamp

of the last bucket expires, the bucket is deleted. When a

new data element arrives with value is 0, it is ignored;

otherwise, a new bucket with size 1 and the current time-

stamp is created. The list of buckets is then traversed in

order of increasing sizes. If there are k/2 ? 2 buckets of the

same size, the oldest two of these buckets are merged into a

single one of double the size. The EH algorithm maintains

a data structure which can give an estimate for the counting

in sliding window problem with relative error at most 1/k

using (k/2 ? 1)(log(2N/k ? 1) ? 1) buckets.

A distinct approach using time decaying aggregates is

proposed by (Cohen and Strauss 2006). The problem of

maintaining time decayed aggregates is addressed, for

general decay functions, including exponential decay,

polynomial decay and sliding window. An algorithm for

maintaining polynomial decay approximately with storage

of O(log(N) log log(N)) bits is given. It shows that poly-

nomial decay can be tracked nearly as efficiently as

exponential decay.

Exponential histograms (EH) have been expanded by

Qiao et al. (2003) to provide approximate answers to

sliding window statistics in multivariate streams. A two-

dimensional histogram is proposed to support sliding

window queries for multiple elements using exponential

histograms as the basic building block. To further compress

the exponential histograms, a condensed exponential his-

togram is proposed, maintaining the error bound. The

algorithm partitions both time and data values and guar-

antees a bound on the estimation error.

In (Zhu and Shasha 2002) the concept of Basic Win-

dows were introduced to handle windowed aggregates. The

sliding window is divided into Basic Windows of equal

duration. Each Basic Window stores a synopsis and the

corresponding timestamp. The timestamp is used to expire

the Basic Window and replace it by a new one. Results are

refreshed after the current Basic Window is processed. The

approach to sliding windows used in this work is similar. In

(Zhu and Shasha 2002) the synopsis is created using Dis-

crete Fourier Transform and allows multiple stream sta-

tistics such as average and standard deviation to be

monitored.

Several algorithms have been proposed for the frequent

elements problem in sliding windows, the problem of

finding elements whose frequency within the sliding win-

dow exceeds a given threshold. Golab et al. (2003) pro-

posed a deterministic algorithm for identifying frequent

items in sliding windows. It follows the approach of (Zhu

and Shasha 2002), to divide the sliding window into sub-

windows, store only a synopsis of each sub-window, and

re-evaluate the query when the most recent sub-window is

full. It identifies items occurring with a frequency that

exceeds a given threshold. The main issue with this algo-

rithm is that it requires that item frequencies can be

counted exactly within a single Basic Window. Once the

current Basic Window is closed, the top-k elements and

respective frequencies are stored in a synopsis. The sum of

the frequencies of the last item of all the synopsis is the

upper limit on the frequency of an element that does not

appear on any of the top-k lists. The algorithm reports all

items whose sum of frequencies exceeds the upper limit.

Another possible issue is that if k is small, then the upper

limit may be very large and the algorithm will not report

any frequent items.

Lee and Ting (2006) proposed and algorithm based on

Frequent (Demaine et al. 2002) but extending it to the

sliding windows model. The algorithm is obtained by

replacing all the counters by sliding window counters.

These sliding window counters are based on a k-snapshot,

for estimating the number of 1-bits in a bit stream over the

sliding window. The k-snapshot just samples every other k
bits in the stream. The k-snapshot is implemented as a

dequeue and the sliding window is supported by a simple

shift operation. The decrement operation used in Frequent

is replaced by clearing the last 1 bit in the k-snapshot. The

scheme is extended to variable length windows in order to

support time sliding windows. As in Frequent (Demaine

et al. 2002), this algorithm does not provide frequencies

estimates for each element and can not be used to answer

the top-k problem.

The concept of recent frequent elements is presented in

(Tantono et al. 2008). The algorithm considers the N last

observed elements and does not include any extension to

the time sliding window. The algorithm maintains a

M 9 H sketch, where M and H are defined based on the

specific problem, and uses a structure in each cell to store

an approximate summary of recent elements count. H hash

functions are used to update and retrieve a set of structures

for each element. To estimate the frequency of an element,

the algorithm uses the minimum value of those obtained

Evolving Systems

123

from the retrieved structures. Although the authors present

results for the top-k problem, it seems very limited (values

of k are lower than 10) and it may require exhaustive search

as no identifiers are kept stored for the elements.

2.5 Related data mining techniques

There has been a huge amount of work in the data mining

area focused on obtaining frequent itemsets in high volume

and high-speed transactional data streams. The use of

FP-trees (Frequent Pattern trees) and variations of the

FP-growth algorithms to extract frequent itemsets is

proposed in (Tanbeer et al. 2009a) and (Hu et al. 2008).

Frequent itemsets extraction in a sliding window is

proposed in (Tanbeer et al. 2009b) and (Hua-Fu Li and

Suh-Yin Lee 2009). The problem of extracting itemsets is

slightly different, and the proposed solutions do not solve

the top-k problem in sliding windows.

3 The filtered space-saving with partitions (FSP)

An initial and obvious approach to extend FSS to handle

sliding windows, with the sliding window approximated by

p basic time sub-windows of fixed duration, is to use FSS

to identify the most frequent elements in each sub-window,

and then merge the p result sets to have the answer to the

full sliding window. This approach, with a few improve-

ments, will be designated as Filtered Space-Saving with

Partitions (FSP).

Updates will only occur in the last (and only active) sub-

window in the monitored list. Only that sub-window will

require the use of the FSS bitmap counter filter. All other

p - 1 sub-windows or partitions need only to store the list

of elements, which will be referred as a partition list.

To provide an error estimate, each element in the par-

tition list entries should have 3 values: the element itself vj;

the estimate count fj; the associated error ej.

Results can be obtained by merging the partition lists

with the active monitored list. This merge operation can be

avoided if a full list is kept at all times. Whenever an

update occurs in the monitored list, the full list should also

be updated.

Elements that expire at the end of validity of each par-

tition will be removed from the full list. Figure 2 presents

the pseudo-code for the FSP algorithm.

FSP requires additional space and increases the number

of update operations. It requires p partition lists with

m elements each, one full list with up to mp elements and a

bitmap counter with h cells. Whenever an element in the

monitored list of the active sub-window is observed, two

lists have to be updated. FSP also requires a batch update at

each partition expiry to update the full list with the values

of the expired list.

FSP does not maintain the properties of FSS (Homem

and Carvalho 2010b) for the full sliding window. These are

only maintained within each sub-window.

4 The filtered space-saving with sliding window

algorithm (FSW)

The filtered space saving with sliding windows (FSW) is a

further improvement over FSP. In fact it is a novel algo-

rithm that builds on the authors proposed Filtered Space

Saving (FSS) algorithm (Homem and Carvalho 2010b) and

adds a time sliding window filter capability to it.

FSW extends FSS by adding a temporal histogram to

each of the list elements and to the bitmap counter cells.

The sliding window will be approximated by considering

p basic time sub-windows of equal duration. The tem-

poral histogram will consist of p counters or buckets,

one for each sub-window, containing the count of the

observed elements during that sub-window. Observations

will always be accounted in the last and active bucket.

When a sub-window expires the corresponding bucket is

removed.

Whenever a sub-window expires, all element counts

have to be updated. The events observed in the expired

window will no longer contribute to the results. The bitmap

counter will also be updated in the same manner. This

avoids the duplicate list update and all the partition lists of

FSP at the expense of some histogram updates.

When an element is inserted in the monitored list, the

histogram from the corresponding bitmap counter is cop-

ied; when an element in the monitored list is observed, its

counter and histogram are updated. If the observed element

is not in the monitored list, then the corresponding bitmap

counter and histogram are updated.

When an element is removed, the histogram associated

with the corresponding bitmap counter has to be merged

with the element histogram in order to minimize the loss of

information. This is performed by setting each bucket i to

the maximum of the two histograms buckets. The bitmap

counter is then updated to the sum of the buckets of the

histograms. Unlike in FSS, the resulting value of the bit-

map counter can be higher than the count of the removed

element. By keeping the timestamp of element insertion,

the number of buckets in the histogram that needs to be

merged can be determined. Buckets referring to periods

before insertion do not need to be merged.

The histogram representation must have some properties:

• Fast update of the active bucket (the bucket that will be

updated with arriving elements);

Evolving Systems

123

• Fast expiry, i.e. removal of the expired bucket and total

value update;

• Fast merger of histograms, ensuring that the maximum

value for each bucket of the two initial histograms is

kept in the resulting histogram;

• Allow incremental merging of the histogram, as in

many cases, element removal occurs soon after inser-

tion and only a few buckets need to be updated.

Furthermore, to ensure the strong guarantees presented

in Section 5, the following conditions are required:

• Sub-windows boundaries, i.e. bucket boundaries, must

be the same for all elements;

• Exact counts for each sub-window are required.

Histograms can not be approximated.

An obvious choice for the histogram representation is

the equal-width histogram, where each bucket represents a

sub-window. In fact, sub-window duration does not need to

be the same as long as all histograms share the same

boundaries. In such situation the properties of the algorithm

remain unchanged. This representation is not optimal in

Fig. 2 FSP algorithm

Evolving Systems

123

terms of memory usage but allows for a very simple and

fast implementation, especially if circular arrays are used.

Figure 3 presents a block diagram of the FSW algo-

rithm. FSW uses two storage elements. The first is a bitmap

counter with h cells, each containing two values, ai and ci,

standing for the error and the number of monitored ele-

ments in cell i and an histogram Ei. The histogram Ei has

p buckets (Eit stands for bucket t of bitmap counter i), being

Ei1 the oldest bucket and Eip the newest and active bucket.

The hash function needs to be able to transform the input

values from stream S into a uniformly distributed integer

range. The hashed value h(x) is then used to access the

corresponding counter. Initially all values of ai, ci and Eit

are set to 0.

The second storage element is a list of monitored ele-

ments with size m. The list is initially empty. Each element

consists of 4 values and a histogram: the element itself vj,

the estimate count fj, the associated error ej, the insertion

timestamp tj and the histogram Cj. The histogram Ci has

also p buckets (Cjt stands for bucket t of monitored list

element j) with Ci1 as the oldest bucket and Cip the newest

and active bucket.

In order for an element to be included in the monitored

list, it has to have at least as many possible hits ai as the

minimum of the estimates in the monitored list, l = min

{fj}. While the list has free elements l is set to 0.

When a new element is received, the hash is calculated

and the bitmap counter is checked; If there are already

monitored elements with that same hash (ci [0), the

monitored list is searched to see if this particular element is

already there; If the element is in the list then the estimate

count fj and Cjp are incremented.

A new element will only be inserted into the list if

ai ? 1 C l. If the element is not to be included in the

monitored list, then ai and Eip are incremented. In fact,

ai stands for the maximum number of times an element

that has hash(x) = i and that is not in the monitored

list value could have been observed in the sliding

window.

If the monitored list has already reached its maximum

allowed size and a new element has to be included, the

element with the lower fj is selected for removal. If there

are several elements with the same value, then one of those

with the larger value of ej is selected. If the list is kept

ordered by decreasing fj and increasing ej, then the last

element is always removed.

When the selected element is removed from the list, the

corresponding bitmap counter cell is updated, cj is

decreased, the histograms merged by setting Ejt = max

{Cjt, Ejt}, for t = 1…p, ai =
P

t Ejt with the maximum

possible error incurred for that position.

The new element is included in the monitored list

ordered by decreasing fj and increasing ej, ci is incre-

mented, fj = ai ? 1, ej = ai, tj = t0, and Cj = Ei (t0 stands

for the moment of insertion).

FSW requires sub-window expiry to be processed in a

batch manner. At the moment of expiry, both the monitored

list and the bitmap counter need to be scanned and updated.

For every element in the monitored list, fj and ej have to

be decremented by Cj1 (ej minimum is 0), Cj rotated

(assuming a circular array implementation) and Cjp set to 0.

If all observations of an element expire, fj = 0, the element

is removed from the monitored list. After all elements are

updated, the monitored list must be ordered by decreasing fj
and increasing ej.

Every element, Ei, in the bitmap counter has to be

rotated (assuming a circular array implementation) and Eip

set to 0. The maximum possible error for cell i, is set to

ai ¼
P

t Ejt.

Obvious optimizations to this algorithm, such as the use

of better structures to hold the list of elements, to keep up

to date l, or to speed up access to each element, will not be

covered at this stage. Figure 4 presents the pseudo-code for

the FSW algorithm.

5 Properties of FSW

Unfortunately, FSW does not maintain all the properties of

FSS regarding l or the guarantee of a maximum error of

the estimate as presented in (Homem and Carvalho 2010b).Fig. 3 FSW algorithm diagram

Evolving Systems

123

It is easy to construct an example where old elements with

the same expiry sub-window completely fill the monitored

list and avoid the inclusion of new elements during the full

window. The list will not contain any elements when the

old elements expire, therefore the error is not bound by a

fraction of N (the total number of events in the data

stream).

Some of the interesting stochastic properties of FSS are

also kept in FSW. It can be proven that l is limited by the

distribution of hits in the bitmap counter. FSW keeps the

property of FSS that the maximum error depends on the

ratio between h and the number of distinct values D in the

data stream (Homem and Carvalho 2010b).

The use of hash(x) as a proxy to the element x for fil-

tering and error estimation purposes, has the obvious dis-

advantage of generating collisions. These collisions affect

the frequency estimation and introduce error; in order to

minimize error, the hash function must map the keys to the

hash values as evenly as possible. The hash values should

be uniformly distributed. A good randomizing or a

Fig. 4 FSW algorithm

Evolving Systems

123

cryptographic function would be a good choice for the hash

function (although performance should also be taken into

consideration). One will consider that the hash function

hash(x) distributes x uniformly over the h counters.

Theorems 1 to 4 present strong guarantees similar to

FSS algorithm. Theorem 5 presents stochastic bounds

that limit the error depending on the total number of

distinct elements D and the number of cells h in the

bitmap counter.

Please note that, throughout the text, the use of the i and

j subscripts when referring to single element assumes that

an element with hash i may be included in the monitored

list in the position j.

Lemma 1. The value of l and of each ai and Eiw

increases monotonically over time during the sub-window

w. For every t, t0 €]tw-1, tw], with tw-1 being the time the

sub-window has started, and tw the time it expires:

t� t0) ai tð Þ� ai t0ð Þ ð1Þ
t� t0) l tð Þ� l t0ð Þ ð2Þ
t� t0) Eiw tð Þ�Eiw t0ð Þ ð3Þ

Proof. As ai and l are integers:

By construction, ai and Eiw are incremented when a non-

monitored list element is observed between expiries. ai and

Eiw maintain the values if the element is monitored or

inserted in the list. ai and Eiw get updated when an element

is removed from the list.

In case of a removal, considering t- and t? as the

instants before and after the removal:

Eit tþð Þ ¼ max Eit t�ð Þ;Cjt t�ð Þ
� �

�Eit t�ð Þ

So:

ai tþð Þ ¼
X

t

Ejt tþð Þ�
X

t

Ejt t�ð Þ ¼ ai t�ð Þ

Therefore, at all times between expiries:

t� t0) l tð Þ� l t0ð Þ
t� t0) ai tð Þ� ai t0ð Þ
t� t0) Eiw tð Þ�Eiw t0ð Þ

End of Proof.

Lemma 2. The value of ai is always greater than or equal

to the maximum number of observations Fx of any element

x with hash i that is not in the monitored list.

Proof. An element that is not in the monitored list has

either never been there during the entire sliding window or

has been removed.

By construction any observation of an element with hash

i is always counted either in the monitored list or in the Ei

histogram.

Consider an element that is never inserted in the list. In

this case, all observations counted in Ei histogram, in each

sub-window Eiw, will be at least equal to the observations

of element x in that sub-window, Fxt. Therefore:

ai ¼
X

w

Ejw�
X

t

Fxw ¼ Fx

By construction, an element in the monitored list

maintains the exact count of observations since it was

inserted in the list, fj - ej. The value of ej is the equal to the

value of ai at the instant of insertion minus all expired

observations.

At the time of removal from the list:

ai ¼
X

w

max Eiw;Cjw

� �

For every sub-window before insertion in the monitored

list, t0 [tw:

Cjw ¼ Eiw�Fxw

For the sub-window where insertion in the monitored

list occurred, tw-1 [t0 C tw:

Cjw ¼ Cjw tj

� �
þ Fx twð Þ � Fx tj

� �
�Fx twð Þ ¼ Fxw

For every sub-window where the element was already in

monitored list, tw [t0:

Cjw ¼ Fxw;

Therefore:

ai ¼
X

w

max Eiw;Cjw

� �
�
X

w

max Eiw;Fxwf g

�
X

w

Fxw ¼ Fx

So at all times:

ai�Fx

End of Proof.

Theorem 1. An element with a total number of obser-

vations Fxw observed in sub-window w must be in the list if

Fxw is greater than lw, the value of l at tw.

Proof. From Lemma 1 is known that within sub-window

w, l increases monotonically; therefore it is at its maxi-

mum at the end of the sub-window period tw. During the

entire sub-window, l is less than or equal to lw.

From Lemma 2 is known that if an element is not in the

monitored list, ai C Fx.

Therefore, if the Fxw-th observation occurs for an

element in sub-window w, that element is either already

in the monitored list or is inserted, as by construction any

element with ai(t-) ? 1 [l is inserted in the monitored

list. Considering t- and t? as the instant before and the

instant after:

Evolving Systems

123

ai t�ð Þ�Fx tþð Þ � 1) ai t�ð Þ þ 1�Fx tþð Þ
¼ Fxw [lw� l

End of Proof.

Lemma 3. The estimated count fj of an element in the

monitored list is at least equal to its total number of

observations Fx.

Proof. By construction the algorithm keeps an exact

count of the observations while the element is in the

monitored list. From Lemma 2 is known that before

insertion, at moment t-;

ai t�ð Þ�Fx t�ð Þ
fj tþð Þ ¼ ej tþð Þ þ 1 ¼ ai t�ð Þ þ 1�Fx t�ð Þ þ 1 ¼ Fx tþð Þ

Therefore, for a monitored element one has at all times:

fj�Fx

End of Proof.

Theorem 2. An element is kept in the monitored list as

long as its total number of observations Fw [lw for each

sub-window w since it was observed (inclusive).

Proof. From Theorem 1 it is known that the element was

in the monitored list when it was last observed with

Fw [lw.

By construction removals occur only for elements with

fj = l.

From Lemma 2 is known that if an element is not in the

monitored list, then ai C Fx.

Therefore if the Fw observation occurs for an element in

sub-window w, that element is either already in the

monitored list or is inserted, as by construction, any

element with ai(t-) ? 1 [l is inserted in the monitored

list:

ai t�ð Þ�Fx tþð Þ � 1) ai t�ð Þ þ 1�Fx tþð Þ[lw� l

End of Proof.

Lemma 4. The value of ej in an element x with hash i

included in the monitored list is always lower or equal to

ai.

Proof. By construction ei is set at the instant of insertion

of the element in the list to the value of ai. At that instant Ej

and Cj are equal.

ei tj

� �
¼ ai tj

� �
¼
X

w

Cjw tj
� �

Whenever an expiry happens, the value Cjk of the

expired sub-window k is decreased from both ei and ai,

keeping the difference between the two variables and

ai C ei.. If ei - Cjk \ 0 then ei is set to 0, keeping ai C ei.

End of Proof.

Lemma 5. Let Ni be the total number of observations for

hash i. Let A be the monitored list, Ai the set of all elements

in A such that hash(vj) = i, with j being the position of

element in the monitored list. For all elements in Ai:

Ni�Fj; vj in Ai ð4Þ

Ni� ai þ
X

vj in Ai

fj � ej

� �
ð5Þ

Proof. By definition Ni is the sum of the observation of

all elements with hash i so it is always greater or equal to

one of the parts.

Ni ¼
X

vj in Ai

Fj

Whenever an element with hash i is observed, it is either

in the monitored list and is counted in fj - ej, or it is not in

the list and is counted in ai. When an element with hash i is

inserted in the list, fj - ej = 1, so that is the only

accounted observation. When an element with hash i is

removed from the list, considering t1 as the moment before

the replacement, t2 the moment after the replacement, and

t0 the moment when the removed element was inserted in

the list:

ai t2ð Þ ¼ fj t1ð Þ ¼ fj t1ð Þ � ej þ ej

¼ fj � ej þ ai t0ð Þ� fj � ej þ ai t1ð Þ

The resulting value for ai is lower than the sum of the

two previous values. Therefore,

Ni C ai ?
P

vj in Ai (fj - ej) in all situations.

End of Proof.

Theorem 3. In FSW, for any cell i in the bitmap counter

that has monitored elements:

l�Ni

l�min Nif g ¼ Nmin ð6Þ
E lð Þ�E Nminð Þ: ð7Þ

where N is the total number of elements observed during

the full sliding window.

Proof. The total number of elements N in stream S can be

rewritten as the sum of Ni, the total of elements with hash i.

N ¼
X

i

Ni

Each element contributes only to one counter: either it is

counted in ai or it is counted in a monitored element

observations fj - ej. This means that, in fact, a few hits

may be discarded when a replacement is done, and that Ni

is greater than (if at least a replacement was done) or equal

(no replacements) to ai plus the number of effective hits in

monitored elements. Let A be the monitored list and Ai the

set of all elements in A such that hash(vj) = i:

Evolving Systems

123

Ni� ai þ
X

j in Ai

fj � ej

� �

Ni� ai þ
X

j in Ai

fj � ej

� �
� ai þ

X

j in Ai

fj � ai

� �

¼ ai � ciai þ
X

j in Ai

fj

Ni� ai � ciai þ
X

j in Ai

fj� ai � ciai þ cil

cil�Ni þ ci � 1ð Þai� ciNi

For all ci [0:

l�Ni

This means that our maximum estimate error l is lower

than the maximum number of hits in any cell that has

monitored elements. It also means that for any i:

l�min Nif g ¼ Nmin

It is therefore trivial to conclude:

E lð Þ�E Nminð Þ

End of Proof.

Lemma 6 In FSS and FSW, for any cell i in the bitmap

counter that has monitored elements, let r be the rank of Ni

when ordering all Ni in descending order, Nr the r-th ele-

ment in that ordering and k the number distinct values of i

with elements in the monitored list:

Ni�Nr ð8Þ

l�min Nif g�Nk ð9Þ

E lð Þ�E Nk
� �

ð10Þ

where Nk is k-th ranked element in the full set of bitmap

counters in descending order.

Proof. The set of bitmap counters that has at least one

monitored element is a subset of the full list of bitmap

counters. If the two sets are ordered in descending order,

then it is trivial to see that the r-th element in the larger set

must be equal or greater than the r-th element in the con-

tained set.

By construction, ci is number of elements x in the

monitored list with hash(x) = i. Let k be the number of

distinct values of i with elements in the monitored list:

m ¼
X

i: Ai in A

ci ¼ k þ
X

i: Ai in A

ci � 1ð Þ

The min {Ni} is the last element in the set of bitmap

counters that has at least one monitored element. This list

has exactly k elements, therefore the min {Ni} must be

equal or lower than the k-th element in the full set Nk.

End of Proof.

Theorem 4. In FSS and FSW, l is bound by the number

of observations in Ns, the s-th element in the ordering of

the full set of Ni, with s being the minimum value that

allows for:

Uj¼1::rAj
� �

�m ð11Þ

where #(.) is the number of distinct elements in the set, Aj is

the set of elements associated with Nj and m the size of the

monitored list.

In that situation:

l�Ns ð12Þ
E lð Þ�E Nsð Þ ð13Þ

Proof. Let k be the number distinct values of i with

elements in the monitored list. From Lemma 6:

l�Nk

Assuming the monitored list has m values (otherwise

l = 0), with Aj being the set of elements associated with Nj

then for k its trivial to have:

Uj¼1::kAj
� �

�m

The conditions are met for s = k. As s is chosen to be

the minimum value, s is at most k.

s� k) Ns�Nk� l

End of Proof.

Theorem 4 justifies the use of a larger bitmap counter to

minimize collisions, as less collisions lead to a higher value

of s and therefore to a lower bound for l.

Theorem 5. In FSS and FSW, assuming a hash function

with a pseudo-random uniform distribution, the expected

value of the number of observations in Ns, the s-th element

in the ordering of the full set of Ni, depends on the number

of distinct elements D in stream S and the number of ele-

ments h in bitmap counter.

E sð Þ�m=

�

D C Dþ 1; D=hð Þ=C Dþ 1ð Þð Þh:

�
X

D� i� 1

C i; D=hð Þ=C ið Þð Þh
� ð14Þ

where C(x) is the complete gamma function and C(x, y) is

the incomplete gamma function.

Proof. Consider Di as the number of distinct elements in

each bitmap counter i. To estimate the Di values in each

cell, consider the Poisson approximation to the binomial

distribution of the variables as in (Bertsekas 1995). One

will assume that the events counted are received during the

period of time T with a Poisson distribution. So:

Evolving Systems

123

k ¼ D=T

Or considering T = 1, the period of measure:

k ¼ D

This replaces the exact knowledge of D by an

approximation as E(x) = D, with x = P(k). Although the

expected value of this random variable is the same as

the initial value, the variance is much higher: it is equal to

the expected value. This translates in introducing a higher

variance in the analysis of the algorithm. However, since

the objective is to obtain a maximum bound, this additional

variance can be considered.

Consider that the hash function h(x) distributes elements

uniformly over the h counters. The average rate of events

falling in counter i can then be calculated as ki = k/h.

The probability of counter i receiving k events in [0, 1] is

given by:

P Di ¼ kjt ¼ 1ð Þ ¼ Pik 1ð Þ ¼ kk
i e�kiT=k! ¼ D=hð Þke�D=h=k!

And the cumulative distribution function is:

P Di� kjt ¼ 1ð Þ ¼ C k þ 1;D=hð Þ=C k þ 1ð Þ

To estimate E(Dmax) let us first consider the probability

of having at least one Di larger than k:

P Dmax� kjt ¼ 1ð Þ ¼ P Di� k for all i jt ¼ 1ð Þ

As the Poisson distributions are infinitely divisible, the

probability distributions and each of the resulting variables

are independent:

P Dmax� kjt ¼ 1ð Þ ¼
Y

P Di� kjt ¼ Tð Þ
¼
Y

C k þ 1;D=hð Þ=C k þ 1ð Þ
,

P Dmax� kjt ¼ 1ð Þ ¼ C k þ 1;D=hð Þ=C k þ 1ð Þ½ �h
¼ g k þ 1ð Þ;

and since k is integer:

P Dmax ¼ kjt ¼ 1ð Þ ¼ P Dmax� kjt ¼ 1ð Þ
� P Dmax� k � 1jt ¼ 1ð Þ

,

P Dmax ¼ kjt ¼ 1ð Þ ¼ C k þ 1;D=hð Þ=C k þ 1ð Þð Þh

� C k; D=hð Þ=C kð Þð Þh

,

P Dmax¼ kjt¼1ð Þ¼ C kþ1;D=hð Þ=kð Þh� C k;D=hð Þð Þh
h i

=C kð Þh

,

E Dmaxð Þ ¼
X

i

i C iþ 1;D=hð Þ=C iþ 1ð Þð Þh
h

� C i; D=hð Þ=C ið Þð Þh
i

,

E Dmaxð Þ ¼
X

i

i g iþ 1ð Þ � g ið Þ½ �

¼ g 2ð Þ � g 1ð Þ½ � þ 2 g 3ð Þ � g 2ð Þ½ � þ . . .
þ D g Dþ 1ð Þ � g Dð Þ½ �

,

E Dmaxð Þ ¼ Dg Dþ 1ð Þ �
X

D� i� 1

g ið Þ

¼ D C Dþ 1; D=hð Þ=C Dþ 1ð Þð Þh

�
X

N� i� 1

C i; D=hð Þ=C ið Þh

As s will greater than m/Dmax:

E sð Þ�m=E Dmaxð Þ

End of Proof.

Figure 5 illustrates the behavior of Di and Dmax proba-

bility mass function using the Di as the x axis. For

D = 100,000 and h = 10,000:

The expected value of E(Dmax) = 24.28. The intuitive

justification for using the error filter is that by using more

cells in the filter than in the monitored list one can control

and minimize the collisions (since each entry in the mon-

itored list requires space equivalent to at least 3 counters).

This in turn will increase s, lower the Nr value and further

bound the maximum error l.

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0 10 20 30 40

P(Di=k)

P(Dmax=k)

Fig. 5 Probability mass function for Di and Dmax, D = 100,000 and

h = 10,000

Evolving Systems

123

6 The improved filtered space-saving with sliding

window algorithm (FSWr)

FSW uses a bitmap counter to hold the ai counters and

Ei histograms. The same number of ai counters and Ei

histograms are used. However, this is not required, and

more counters than histograms could be used. This will

allow more detail to be kept during the active sub-win-

dow without all the space that would be required if the

same number of histograms were used. In fact this

provides a good trade-off between space and perfor-

mance without breaking any of the FSW properties

presented in Section 5.

The idea is to set a ratio r between ak counters and Ei

histograms. The hash(x) mod hr = k of an element x is now

used to access the more detailed bitmap counter ak, while

the histogram Ej is accessed by dividing k by the ratio

r (integer division div). All the properties of FSW hold as

long as the active bucket Ejp is kept with the maximum of

all ak such that j = i div r.

For the remaining of this paper, FSW will designate

both FSW and FSWr. In fact FSW can be seen as FSWr

with r = 1.

7 Non-unique filtering in FSW algorithm (FSWf)

When used in data streams with huge number of distinct

values, the inclusion of a non-unique filter is an inter-

esting improvement to FSWr. The idea is to always

count any element that is already in the monitored list,

but to filter elements before updating the bitmap counter.

Elements that one knows that were not previously seen

during the sub-window should not update the bitmap

counter. This can easily be implemented using a bit

array of f bits and hash(x) mod f as the index to that

array. If the bit is clear, then the element was not

observed during that sub-window.

The bit is set when receiving a new element. If a bit was

previously set, then the element might have previously

been observed and should update the bitmap counter. As

this might be the second observation, if Ejw is still zero,

then the bitmap counter should be increased by 2. This

ensures that if an element occurs twice during the sub-

window it is properly counted. If it is observed only once

(and no collisions occur) it is ignored. At the start of a new

sub-window the bit array is cleared.

The maximum error this filtering introduces is of 1 per

each valid sub-window before the element was inserted in

the monitored list. No error is added while the element is

being monitored. An additional parameter f is required and

should be set high enough to keep a low collision rate

during a sub-window period.

8 Implementation

The practical implementation of FSW follows the one of

FSS (Homem and Carvalho 2010b) with the addition of

histograms to each element in the monitored list and to the

bitmap counter. It may include the Stream Summary data

structure presented in (Metwally et al. 2005).

FSW needs a bitmap counter to hold the ai counters and

Ei histograms. The ci counters are, however, optional, as

they may well be replaced by a single bit indicating the

existence or not of elements in the monitored list with that

hash code. When an element is removed, the bit is kept set.

If the following search of element with hash i does not find

an element, then the bit is cleared. This reduces memory at

the expense of a potential additional search in the moni-

tored list. Eventually ci counters may even be dropped at

the expense of a search in the monitored list for every

element in the stream S.

Histograms can be implemented using a circular array of

counters. A global index is kept to the active bucket.

During merge operations, tj can be used to determine if a

full merge as to be performed, or if only a partial merge is

required as the element may have been very recently

inserted in the monitored list. Only the active bucket and

the buckets that may have been updated since insertion

need to be merged. Most of times the removals occur for

recently inserted elements, therefore avoiding unneces-

sary merge operations can improve significantly the

performance.

One obvious improvement on the basic implementation

of the histograms is the use of compression algorithms for

histogram representation. In fact, the values contained in

each of the histogram bucket do not require a very large

counter in most cases; the use of lower size counters, dis-

tinct counters sizes or any lossless data compression

techniques such as Huffman encoding can reduce the space

required per histogram. Lazy histogram creation for the

histograms in the monitored lists can also be used, as in

most cases the elements are inserted and deleted from the

list in the same sub-window or within a few sub-windows.

The space required might only be allocated after the first

sub-window expiry or after a few sub-windows, with val-

ues being kept in a transient structure.

Another possible improvement is the use of non-equal

width buckets for the histograms. If the distribution of

elements over time is known a priori, then the sub-window

durations can be adapted to distribute weights through the

buckets. More balanced buckets may lower the error

introduced by sub-window expiry updates. Changing the

duration of the sub-windows does not change any of the

properties of FSW (duration is not relevant in the proofs).

The implementation of FSW using approximate histo-

grams is also a possibility, even if many of the properties of

Evolving Systems

123

FSW do not hold, as they require an exact representation of

sub-window counts. However, preliminary results on real

life data show that performance may still be adequate for

many situations, and that the trade-off between space saved

by the approximate representation of the histograms and

the increase in monitored list or bitmap counter size may

be a good option.

Approximate histograms over a sliding window has

generated many interesting developments: wavelets-based

histograms were presented in (Matias et al. 1998); expo-

nential histograms were presented in (Datar et al. 2002);

smooth histograms that extends the class of functions that

can be approximated on a sliding window were presented

in (Braverman and Ostrovsky 2007); waves, a further

improvement to exponential histograms with sum and

count, was presented in (Gibbons and Tirthapura 2002)

with time and memory optimal algorithms. A fast incre-

mental algorithm for maintaining approximate algorithms

was presented in (Gilbert et al. 2002) and an algorithm for

updating wavelets-based histograms in (Matias et al. 2000).

The main issue when using approximate histograms to

implement FSW is that some specific update operations

need to be supported.

Exponential histograms, smooth histograms or waves

are not an option as they do not provide a merge operation

that returns the max count between two histograms.

Wavelets-based histograms allow for such a merge to be

performed although the values to be merged have to be

decoded, merged and then encoded. Wavelets-based his-

tograms can also be used as circular arrays, the update

operation requiring only the difference between values to

be propagated as shown in (Matias et al. 2000). The use of

a small cache to hold the most recent sub-windows might

solve the performance problems as most merge operations

require the merge of only a few buckets.

The final issue to be considered when implementing

these algorithms is the setting of parameters. A few

guidelines will be discussed, although at this stage no

strong rules are available to ensure optimal performance.

Clearly, performance has to be tuned for a specific appli-

cation by testing distinct parameterizations using training

data. One will consider k will be a given value that depends

only on the specific problem being solved using these

algorithms.

The number of sub-windows p within the required sub-

window requires weighting two factors; increase in p will

give a smother sliding window approximation, but will also

require additional space and operations. If the problem

does not suggests a natural value for p then the required

time precision should drive the setting of the parameter.

Setting the length of the monitored list m depends

mainly on k and the number of distinct elements D in the

data stream. Clearly m should always be at least twice the

value of k to ensure reasonable results, but when applied to

a data stream with very high dispersion, m has to be

increased. One can expect FSW to behave in a similar

manner to FSS; in (Homem and Carvalho 2010b) good

results were achieved in finding the top-100 elements in a

data stream with more than 100,000 distinct elements using

m = 2,000.

The parameter h will determine the number of histo-

grams to maintain in the bitmap counter. Good results were

obtained when h is set between 3 and 6 times m. With

h less than 3 times m the filtering effect by the bitmap

counter is less significant. Setting a value of h too high may

not increase the results significantly and will have a high

impact in terms of space use.

Parameter r controls the ratio between entries in the

hash counters used in the active sub-window and

the number of histograms in the bitmap counter. In FSWr

the parameter r can be used to increase the filtering effect

of the bitmap counter without all the increase in space

allocation that would be required by setting an equivalent

value for h. Values between 4 and 20 were tested and,

again, higher r values will generate better results in higher

dispersion data streams.

The parameter f, used in FSWf, controls the number of

bits available in the non-unique filter. The value should be

set depending on the number of distinct elements expected

during a single sub-window. A value within the same

magnitude of D would be appropriate.

9 Experimental results

Given the approximation to the sliding window used in

FSP and FSW, it is natural to compare the results, memory

and operations required by those algorithms with the

alternative of using one top-k algorithm starting at each

sub-window. Instead of using FSP or FSW for collecting

daily top-k results with an hourly sub-window, one could

use 24 instances of Space-Saving or FSS starting at each

hour.

Space-Saving requires only one dimensioning parame-

ter, mSS, the number of elements in the monitored list. FSS

requires two parameters, mFSS, the number of elements in

the monitored list and hFSS, the number of cells in the

bitmap counter. In terms of memory use, Space-Saving

requires at least 3 mSS counters. Comparable or better

results can be obtained with FSS using the same 3 mSS

counters by setting mFSS = mSS/2 and hFSS = 3 mFSS as

shown in (Homem and Carvalho 2010b). The use of p sub-

windows would require 3. p. mSS counters.

Considering that the same dimensioning is used for FSP,

increasing its bitmap counter by r (as it only requires one

bitmap counter), then mFSP = mFSS and hFSP = 3 r. mFSS,

Evolving Systems

123

with the number of counters used (as in (Homem and

Carvalho 2010b) cj will be ignored):

nFSP ¼ 2: 3: p:mFSP þ hFSP ¼ 6 p mFSS þ 3 r:mFSS

¼ 6 mFSS pþ r=2ð Þ ð15Þ

If the same dimensioning is used for FSW,

mFSW = mFSS and hFSW = 3 mFSS, p sub-windows and

histograms using p counters, then the number of counters

used is:

nFSW ¼ mFSW 4þ pð Þ þ hFSW pþ rð Þ
¼ mFSS 4þ pð Þ þ 3mFSS pþ rð Þ ¼ mFSS 4þ 4pþ 3rð Þ

ð16Þ

with these dimensioning rules, the number of counters in

FSW will always be lower than FSS or FSP for any number

of sub-windows p [2 ? r.

If memory usage is comparable between a single

instance of FSW and p instances of Space-Saving or

FSS, the difference is huge regarding operations. An

element update in FSW requires at most one search/

update in the monitored list, one update in the bitmap

counter and one update in a histogram. Both bitmap

counters and histograms have direct access through an

index so the operations are very fast. Each of the

instances of Space-Saving will require a search/update in

the monitored list for each element. FSS requires the

same search/update in the monitored list and one update

in the bitmap counter. Having p instances of Space-

Saving or FSS increases linearly the number of opera-

tions during an element update.

FSW will also require full scans on the monitored list

and bitmap counter at sub-window expiry, in a batch pro-

cess. This will account at most for mFSW updates on the

monitored list, hFSW update operations on the bitmap

counter, and mFSW ? hFSW updates on the histograms.

However, if one considers the number of updates in a

single sub-window to be greater than mFSW ? hFSW, the

batch process will require less operations than for update

during the same window. Under those assumptions, the

total operations required for FSW during any sub-window

will be in the order of those required by 2 instances of FSS.

The initial set of tests will identify the most frequent

words in a large set of newspaper articles. This set com-

prises 5,208 articles with a total of 1,489,947 words. Texts

were written in Portuguese by 87 distinct authors, pub-

lished during a period of 180 days in a newspaper con-

sidered a reference in Portuguese daily newspapers. One

can expect this data to present a zipfian distribution.

Articles were processed in chronological order, split into

words and punctuation, and simultaneously processed

using Space-Saving, FSS, FSP, FSW and FSWr. In this

case the sub-windows duration was set to the minimal

period distinguishing articles, as these were dated on a

daily basis.

To establish a baseline for precision evaluation, exhaus-

tive computation of the exact top-k elements was performed.

For each time window in the tests, the top-k elements were

determined by exact, brute force method. The precision

value of each algorithm was obtained comparing the algo-

rithm results with the exact top-k elements.

Please note that each run for a single algorithm covers a

much longer period than the defined sliding window. Each

execution generates results at every sub-window period

end. Instead of several distinct runs of the algorithm, one

has considered the more interesting and more realistic

execution of the algorithm in a sustained manner, gener-

ating consecutive results as it would be expected in a real

life situation. Repeating the execution of the algorithm

using the same data would result in exactly the same

results, since the pseudo-random hash generates exactly the

same value for the same key. For each test scenario, the

average and standard deviation of precision results in each

sub-window can provide a good indicator of the precision

estimate and dispersion achievable with the algorithm.

The first set of tests identifies the weekly top-500 most

frequent words. Space-Saving and FSS tests were per-

formed by initiating an instance of the algorithm at each

day and keeping it active for a single week. FSP, FSW and

FSWr instances were initialized only once and kept active

during the full 180 days period of data.

For the experimental tests, the following indicators were

considered:

• Top-k Precision (and Top-k Recall) is the ratio between

correct top-k elements included in the returned top-k

elements and k. This is the main quality indicator of the

algorithms as this reflects the number of correct values

obtained when fetching a top-k list.

• The maximum error l for each algorithm. The values

are not comparable between algorithms; for FSW and

FSWr the value shown is the last value of l, obtained at

the end of the execution, for Space-Saving and FSS the

value shown is the average of the ending values of l.

FSP does not provide a maximum error l for the full

sliding window.

• The estimated number of Counters required by the

algorithm. In FSP, as the number will depend on the

full list size two values are presented; the observed

number of counters and the maximum possible value.

• Operations performance indicators are also given.

Inserts are the total number of elements inserted in

the monitored list, Removals the number of elements

removed from the monitored list including those that

expired, and Hits and Updates the number of hits in the

monitored list plus the number of elements updates

Evolving Systems

123

during the sub-window expiries. Bucket Updates show

the number of histograms buckets merged during

deletions and expiries.

Parameters for each of the algorithms were set to ensure

the memory used in each type remained comparable as

previously enunciated:

• For Space-Saving; mSS = 2,500

• For FSS; mFSS = 1,250 and hFSS = 3,750

• For FSP; mFSP = 1,250 and hFSP = 15,000 and

p = 7

• For FSW; mFSW = 1,250, hFSW = 3,750 and p = 7

• For FSWr; mFSWr = 1,250, hFSWr = 3,750, p = 7 and

r = 4

Figure 6 shows the precision results for each of the

algorithms at the end of each day. Periods with less than

p full days were not considered. Table 1 details the per-

formance of each algorithm.

The second set of tests repeat the experiment for the

period of 1 month, maintaining the daily sub-window.

Algorithm parameterization was kept with the exception of

FSP and FSWr, were r was changed to 16 to take advantage

of the larger period p. Figure 7 and Table 2 show the

results of this set of sets.

Clearly and as expected, FSS achieves the best results,

being consistently better than any other in every situation.

Space-Saving performs worse than FSS. The number of

operations required by the use of multiple instances of FSS

is huge when compared to those required by FSW. This is

even worse for Space-Saving. FSW performance degrades

significantly from weekly to monthly period, being the less

stable of all. FSWr and FSP performance follows very near

FSS. The number of operations required by FSP is still very

high. FSWr provides an excellent compromise between

results and required operations.

One of the most interesting aspects regarding FSW and

FSWr behavior is that, most of the times, insertion and sub-

sequent removal of elements from the monitored list occur in

a very short time. In fact most of the elements are removed

from the monitored list in the same sub-window they were

inserted in. Table 3 presents the percentage of removals as a

function of the duration of stay in the monitored list.

This motivates the use the wider bitmap counter for the

active sub-window, as it allows more detail to be kept

during that critical stage.

An additional set of tests present an even harder sce-

nario: finding the most frequent destinations in a large set

of mobile calls. The data set includes 6,270,022 real call

86,0%

88,0%

90,0%

92,0%

94,0%

96,0%

98,0%

100,0%

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 10
1

10
5

10
9

11
3

11
7

12
1

12
5

12
9

13
3

13
7

14
1

14
5

14
9

15
3

15
7

16
1

16
5

16
9

17
3

17
7

 SS

 FSS

 FSP

 FSW

 FSWr

Fig. 6 Weekly top-500 words precision for each algorithm

Table 1 Performance results for weekly top-500 words tests

Algorithm 7 9 SS 7 9 FSS FSP FSW FSWr

Precision average 92.8% 97.1% 96.8% 92.8% 96.8%

Precision std. deviation 1.5% 0.8% 1.1% 1.4% 1.2%

l 15.81 13.55 – 15 13

Counters 52,500 52,500 56,000–67,500 43,750 55,000

Inserts 3,809,897 2,228,267 1,104,979 194,470 158,377

Removals 3,374,897 2,010,767 874,294 193,220 157,127

Hits and updates 6,245,284 5,140,202 2,065,535 991,980 1,000,951

Bucket updates – – – 333,159 280,504

Evolving Systems

123

records, from a total of 3,170 distinct accounts (many with

multiple users), made during a period of 35 days. The calls

records are ordered by starting time. Within this set, a total

of 913,325 distinct destinations were identified. Of those,

385,082 received just a single call. The calls present a very

characteristic daily and weekly cyclical distribution.

The set of tests will identify the daily top-500 most

frequent destinations within a hourly sub-window. Again,

Space-Saving and FSS tests were performed by initiating

an instance of the algorithm at each hour and keeping it

active for a single day. FSP, FSWr and FSWf instances

were initialized only once and kept active during the full

35 days period of data.

Due to the very high number of distinct values, the

overall parameters had to be set higher than in previous

tests. FSWr and FSWf instances were also given extra

space in the monitored list to ensure comparable

performance:

• For Space-Saving; mSS = 8,000

• For FSS; mFSS = 4,000 and hFSS = 12,000

• For FSP; mFSP = 4,000 and hFSP = 96,000 and p = 24

• For FSWr; mFSWr = 8,000, hFSWr = 12,000 p = 24

and r = 8

• For FSWf; mFSWf = 8,000, hFSWf = 12,000, p = 24,

r = 8 and f = 200,000

Note that the unique element filter of FSWf requires a

bit array with 200,000 bits, equivalent to 12,500 counters

with 16 bits each.

Figure 8 shows the precision results for each of the

algorithms at the end of each hour. Periods with less than

1 day were not considered. Table 4 details the performance

of each algorithm.

There is a clear weekly cycle, and precision increases

significantly during weekends as the number of calls

decreases. Space-Saving and FSS performance are not good

as there is a huge number of single call destinations, and this

introduces a very high number of insertions and deletions in

Table 2 Performance results for monthly top-500 words tests

Algorithm 30 9 SS 30 9 FSS FSP FSW FSWr

Precision average 94.4% 98.7% 97.5% 90.4% 97.6%

Precision std. deviation 0.9% 0.5% 0.5% 1.4% 0.9%

l 73.41 55.01 – 71 57

Counters 225,000 225,000 198,000–285,500 158,750 215,000

Inserts 13,619,455 4,598,213 990,202 102,120 62,576

Removals 13,241,955 4,409,463 754,888 100,870 61,326

Hits and updates 23,934,302 19,771,780 2,323,366 982,196 994,295

Bucket updates – – – 237,388 172,715

Table 3 Monitored list removal statistics

Period 7 days 30 days

Duration in the list FSW

(%)

FSWr

(%)

FSW

(%)

FSWr

(%)

Less than 1 sub-window 65.5 66.8 58.7 58.3

Exactly 1 sub-window 18.9 16.3 19.8 16.1

Exactly 2 sub-windows 6.8 6.2 7.5 7.2

More than 2 sub-windows 8.8 10.6 14.0 18.4

86,0%

88,0%

90,0%

92,0%

94,0%

96,0%

98,0%

100,0%

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 10
1

10
5

10
9

11
3

11
7

12
1

12
5

12
9

13
3

13
7

14
1

14
5

14
9

15
3

15
7

16
1

16
5

16
9

17
3

17
7

 SS

 FSS

 FSP

 FSW

 FSWr

Fig. 7 Monthly top-500 words precision for each algorithm

Evolving Systems

123

the bottom of the monitored list. This huge substitution rate

degrades the error estimate. The effect is greater in Space-

Saving than in FSS as the bitmap counter filters some of the

replacements. The same effect is also present in FSW. FSP

handles this very well as it ‘‘averages’’ each hour and

computes the final answer. The non-unique filtering option

is clearly appropriate for this scenario as it removes most of

the single call destinations and focuses the algorithm on the

most significant destinations.

The second set of tests repeats the experiment for a

3-day period, with a 4-hour sub-window. Algorithm

parameterization was kept. Figure 9 and Table 5 show the

results of these tests.

The 3-day period breaks the weekly cycle except for

Space-Saving. Space-Saving, FSS and FSW performance

remain affected by the huge volume of single call desti-

nations. In fact, this large number of unique elements

introduces a sort of ‘‘noise’’, increasing the error l and

lowering significantly the precision. Without the filtering

effect of the bitmap counter Space-Saving performance is

heavily degraded and becomes very unstable. The aver-

aging of FSP delivers excellent results. The non-unique

filtering option of FSWf is still critical for exceptional and

stable results.

10 Conclusions

This paper presents new algorithms that build on top of the

best existing algorithm for answering the unrestricted top-k

problem and extends it to the sliding window scenario. The

FSS algorithm was proposed by the authors (Homem and

Carvalho 2010b) to solve the unrestricted top-k problem. It

improves Space-Saving algorithm proposed by Metwally

et al. (2005). It merges the best properties of two distinct

approaches to this problem, the counter-based techniques

and sketch-based ones and provides strong guarantees

regarding inclusion of elements in the answer, ordering of

64,0%

66,0%

68,0%

70,0%

72,0%

74,0%

76,0%

78,0%

80,0%

82,0%

84,0%

86,0%

88,0%

90,0%

92,0%

94,0%

96,0%

98,0%

100,0%

0:
00

1d
0:

00

2d
0:

00

3d
0:

00

4d
0:

00

5d
0:

00

6d
0:

00

7d
0:

00

8d
0:

00

9d
0:

00

10
d

0:
00

11
d

0:
00

12
d

0:
00

13
d

0:
00

14
d

0:
00

15
d

0:
00

16
d

0:
00

17
d

0:
00

18
d

0:
00

19
d

0:
00

20
d

0:
00

21
d

0:
00

22
d

0:
00

23
d

0:
00

24
d

0:
00

25
d

0:
00

26
d

0:
00

27
d

0:
00

28
d

0:
00

29
d

0:
00

30
d

0:
00

31
d

0:
00

32
d

0:
00

33
d

0:
00

34
d

0:
00

SS

FSS

FSP

FSWr

FSWf

Fig. 8 Daily top-500 destinations precision for each algorithm

Table 4 Performance results for daily top-500 destinations tests

Algorithm 24 9 SS 24 9 FSS FSP FSWr FSWf

Precision average 78.0% 90.2% 96.3% 85.8% 99.1%

Precision std. deviation 9.2% 4.3% 2.6% 6.3% 1.3%

l 1.74 1.17 – 4 1

Counters 576,000 576,000 460,000–672,000 412,000 496,000

Inserts 96,050,191 59,779,547 7,928,158 2,208,715 462,695

Removals 89,522,191 56,515,547 5,331,534 2,120,715 455,778

Hits and updates 51,205,610 39,967,243 6,006,718 8,656,562 8,365,987

Bucket updates – – – 8,436,011 4,842,797

Evolving Systems

123

elements, maximum estimation error and probabilistic

guarantees of increased precision. The use of a bitmap

counter in this algorithm minimizes the operations of

update of the monitored elements list by avoiding elements

with insufficient hits being inserted in the list. The two

algorithms were used as a reference for comparing results.

A less optimized algorithm, both in memory and

operations, FSP, is presented as an intermediate step

when solving the top-k problem in a sliding window. It

basically reuses the FSS algorithm within a sub-window

and generates a full period answer by merging the sub-

windows results. It provides excellent precision by

averaging several periods. It, however, requires more

than the double of update operations of FSW and its

derivatives. It may also give worse results in situations

where the entire distribution changes very significantly

during a single period.

The FSW algorithm extends FSS by including histo-

grams to allow for time expiration of elements. It uses an

approximation to a sliding window by considering p basic

time sub-windows. Sub-windows can have equal or non-

equal duration. Although this is in fact a ‘‘jumping’’ sliding

window the approximation is good for most purposes.

Unfortunately, FSW does not maintain all the properties

of FSS, but it still provides strong guarantees on the

inclusion of elements in the list depending on their real

frequency. It also provides stochastic error bounds that

further improve the performance. FSW provides an error

estimate for each frequency, giving the possibility to con-

trol the quality of the estimate.

This paper presents experimental results that illustrate

the precision and performance of the algorithms when

using a similar memory space. The two sets of data used

represent two real life situations where determining the

top-k elements is important. Memory consumption was key

in the analysis, since this problem arises in many situations

where memory is limited. In this regard, the use of FSW is

envisioned with even less memory than FSP and with

Table 5 Performance results for 3-day top-500 destinations tests

Algorithm 18 9 SS 18 9 FSS FSP FSWr FSWf

Precision average 74.1% 90.8% 96.6% 93.4% 99.1%

Precision std. deviation 6.1% 2.0% 1.1% 1.5% 0.6%

l 1.29 0.78 – 18 7

Counters 432,000 432,000 396,000 to 528,000 400,000 412,500

Inserts 67,916,042 34,278,985 5,800,014 1,282,823 481,935

Removals 66,380,042 33,510,985 4,914,817 1,274,735 473,935

Hits and updates 36,654,727 28,110,337 5,481,997 3,524,475 3,588,049

Bucket updates – – – 2,798,116 1,734,535

Fig. 9 3-Day top-500 destinations precision for each algorithm

Evolving Systems

123

comparable precision. Although execution time will

depend on specific aspects of the implementation, the

number of operations required by each algorithm was also

detailed and points to reductions in execution time.

Two important improvements over the basic FSW are

also presented: the use of a wider bitmap counter for the

active sub-window while keeping a smaller set of histo-

grams for sub-window expiry; and the use of a non-unique

filter for situations were large numbers of unique and low

frequency elements introduce ‘‘noise’’ in the top-k detec-

tion. With these two improvements FSW delivers excep-

tional results, in some cases better than those of FSS for

comparable periods. Adequate dimensioning of the

parameters for each specific situation can therefore gener-

ate good results with minimal memory consumption.

FSW and its derivatives are low memory footprint

algorithms that can answer not only the top-k problem

within a sliding window for large number of transactions,

but also the problem of answering huge number of top-k

problems for a single data stream (as in the case of indi-

vidual top-k lists). It can be used in any domain as long as

the appropriate implementation choices and dimensioning

are made.

References

Aggarwal C (ed) (2007) Data streams: models and algorithms,

Springer, Berlin

Babcock B, Datar M, Motwani R, O’Callaghan L (2003) Maintaining

variance and k-medians over data stream windows. In: Proceed-

ings of the twenty-second ACM SIGMOD-SIGACT-SIGART

symposium on Principles of database systems, pp 234–243

Bertsekas D (1995) Dynamic programming and optimal control. vol 1.

Athena Scientific, Nashua

Braverman V, Ostrovsky R (2007) Smooth histograms for sliding

window, in FOCS 2007, pp 283–293

Cohen E, Strauss M (2006) Maintaining time-decaying stream

aggregates. J Algorithms 59(1):19–36

Cormode G, Hadjieleftheriou M (2010) Methods for finding frequent

items in data streams. VLDB J, vol 19

Cormode G, Muthukrishnan S (2003) What’s hot and what’s not:

tracking most frequent items dynamically. In: Proceedings of the

22nd ACM PODS symposium on principles of database systems,

pp 296–306

Datar M, Gionis A, Indyk P, Motwani R (2002) Maintaining stream

statistics over sliding windows. SIAM J Comput 31(6):1794–1813

Demaine E, López-Ortiz A, Munro J (2002) Frequency estimation of

internet packet streams with limited space. In: Proceedings of the

10th ESA Annual European Symposium on Algorithms,

pp 348–360

Dimitropoulos X, Hurley P, Kind A (2008) Probabilistic Lossy

Counting: an efficient algorithm for finding heavy hitters, ACM

SIGCOMM Comput Commun Rev, vol 38, no. 1

Estan C, Varghese G (2003) New directions in traffic measurement

and accounting: focusing on the elephants, ignoring the mice.

ACM Trans Comput Syst 21(3):270–313

Ganguly S (2003) Counting distinct items over update streams.

Theoret Comput Sci 378(3):211–222

Gibbons P, Tirthapura S (2002) Distributed streams algorithms for

sliding windows. In: Proceedings of the fourteenth annual ACM

symposium on Parallel algorithms and architectures, pp 63–72

Gilbert A, Guha S, Indyk P, Kotidis Y, Muthukrishnan S, Strauss M

(2002) Fast, small-space algorithms for approximate histogram

maintenance In: Proceedings of the thiry-fourth annual ACM

symposium on Theory of computing, pp 389–398

Golab L, DeHaan D, Demaine E, Lopez-Ortiz A, Munro J, (2003),

Identifying frequent items in sliding windows over on-line packet

streams. In: Proceedings of the 3rd ACM SIGCOMM conference

on Internet measurement table of contents, pp 173–178

Homem N, Carvalho J (2010) Estimating Top-k destinations in data

streams, computational intelligence for knowledge-based sys-

tems design. Springer, Berlin/Heidelberg, pp 290–299

Homem N, Carvalho J (2010) Finding top-k elements in data streams.

Inform Sci 180(24):4958–4974

Hu T, Sung S, Xiong H, Fu Q (2008) Discovery of maximum length

frequent itemsets. Inf Sci 178:69–87

Hua-Fu Li, Suh-Yin Lee (2009) Mining frequent itemsets over data

streams using efficient window sliding techniques. Expert Syst

Appl 36(2):1466–1477

Lee L, Ting H (2006) A simpler and more efficient deterministic

scheme for finding frequent items over sliding windows. In:

Proceedings of the 25th ACM SIGMOD-SIGACT-SIGART

symposium on principles of satabase systems, pp 290–297

Manerikar N, Palpanas T (2009) Frequent items in streaming data: an

experimental evaluation of the state-of-the-art. Data Knowl Eng

68(4):415–430

Manku G, Motwani R (2002) Approximate frequency counts over

data streams. In: Proceedings of the 28th ACM VLDB interna-

tional conference on very large data bases, pp 346–357

Matias Y, Vitter J, Wang M (1998) Wavelet-based histograms for

selectivity estimation. In: Proceedings of the 1998 ACM

SIGMOD international conference on management of data,

pp 448–459

Matias Y, Vitter J, Wang M (2000) Dynamic maintenance of wavelet-

based histograms. VLDB, pp 101–110

Metwally A, Agrawal D, Abbadi A (2005) Efficient computation of

frequent and Top-k elements in data streams. Technical Report

2005-23. University of California, Santa Barbara

Muthukrishnan S (2005) Data streams: algorithms and applications,

foundations and trends. Theoret Comput Sci 1(2):117–236

Qiao L, Agrawal D, Abbadi A (2003) Supporting sliding window

queries for continuous data streams. In: Proceedings of the 15th

international conference on scientific and statistical database

management, pp 85–94

Tanbeer S, Ahmed C, Jeong B, Lee Y (2009a) Efficient single-pass

frequent pattern mining using a prefix-tree. Inf Sci 179(5):

559–583

Tanbeer S, Ahmed C, Jeong B, Lee Y (2009b) Sliding window-based

frequent pattern mining over data streams. Inf Sci 179(22):

3843–3865

Tantono F, Manerikar N, Palpanas T (2008) Efficiently discovering

recent frequent items in data streams In: Scientific and statistical

database management, Lecture Notes in Computer Science,

pp 222–239

Zhu Y, Shasha D (2002) Statistical monitoring of thousands of data

streams in real time. In: Proceedings of the 28th international

conference on very large data bases, pp 358–369

Evolving Systems

123

	Finding top-k elements in a time-sliding window
	Abstract
	Introduction
	Relation with previous work
	Top-k counter based techniques
	Top-k sketch based techniques
	Top-k mixed techniques
	Sliding windows algorithms
	Related data mining techniques

	The filtered space-saving with partitions (FSP)
	The filtered space-saving with sliding window algorithm (FSW)
	Properties of FSW
	The improved filtered space-saving with sliding window algorithm (FSWr)
	Non-unique filtering in FSW algorithm (FSWf)
	Implementation
	Experimental results
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

