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Abstract— Fingerprint identification is a well-known technique in 
forensic sciences. The basic idea of identifying a subject based on 
a set of features left by the subject actions or behavior can be 
applied to other domains. Identifying a web user based on a user 
fingerprint is one such application. This paper considers the 
problem of extracting fingerprints from web usage logs and 
matching them with those obtained from a set of known users. It 
presents an innovative fuzzy fingerprint algorithm based on 
vector valued fuzzy sets. Used sites are used as base features to 
create the fingerprint. The assumption is that sites accessed by 
each user remain approximately stable and are distinctive. The 
paper presents the proposed algorithm and shows some 
experimental results that validate the approach. The use of fast 
and compact algorithms is critical due to the possible huge 
number of users, and allows this method to be used on near real 
time. 

Keywords-component; fuzzy  fingerprints, vector valued fuzzy 
sets, similarity, frequent elements, approximate algorithms, data 
streams 

I.  INTRODUCTION1 
In this paper, one considers the problem of extracting a 

fingerprint from web usage logs and then using that fingerprint 
to identify the user behind a distinct web session.  

Identifying users based in their previously known usage is a 
known procedure in several areas such as telecommunications 
and financial fraud detection. For security and judicial 
purposes, identifying a user based on a specific usage behavior 
is also relevant. These detection methods are based on the fact 
that although a suspect or fraudster may present different 
identification credentials or simply no identification at all, its 
behavior and its relationships remain the same. Every 
individual keeps some relationships and habits, either personal 
or businesswise, stable for some time. Even if some of those 
relationships and habits change along time (the individual starts 
working in a different company, a distinct business, marries 
another person, etc.), some will remain stable (same family, 
some job, same interests). This provides the basis for the 
fingerprint as relationships and habits are translated into usage 
events. By using the destination number as a proxy for the 
individual behind a specific communication event, we can 
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gather information out of a person’s calls to its relationship 
network. The sites the user accesses in the web are also a clue 
to the user habits and interests and therefore can be used to 
identify him in a pool of suspected web sessions. 

Within the scope of this paper, one will consider a web 
session as the sequence of web log records that belong to a 
single user, either known or unknown. For anonymous web 
access, one will consider that some method is available to 
group these records into a single session. Although out of the 
scope of this paper, user identity could be linked to a single 
fixed IP address or a single provider login.  

Each web log record represents a user visit to a single web 
site, regardless of the used protocol. The set of known users for 
whom a fingerprint is available will constitute the suspects for 
unknown user sessions identification. 

Fingerprint identification is a well-known technique in 
forensic sciences and widely documented. In computer 
sciences a fingerprint is a procedure that maps an arbitrarily 
large data item (such as a computer file, or author set of texts) 
to a much compact information block, its fingerprint, that 
uniquely identifies the original data for all practical purposes, 
just as human fingerprints uniquely identify people for practical 
purposes. 

In computer sciences, fingerprints are typically used to 
avoid the comparison and transmission of bulky data. For 
example, a web browser or proxy server can efficiently check if 
a remote file has been modified simply by fetching its 
fingerprint and comparing it with the fingerprint of the 
previously fetched copy. Fingerprints are a fast and compact 
way to identify items. 

To serve the user identification purposes, a fingerprint must 
be able to capture the identity of that user. In other words, the 
probability of a collision, i.e., two users yielding the same 
fingerprint, must be small. The fingerprint has also to be 
robust; a user should be identified even if he changes some 
aspects of the web use. The idea of identifying users based on a 
fingerprint is a very appealing one, because identification can 
theoretically be made on near real time.  

To be useful, the fingerprint should comply with some 
basic criteria: 

• Include a minimal set of features that describe the user 
(the suspect) in a compact format. 



                                                                                        
 

• Allow for update operations whenever new information 
(new logs) on the user is available. 

• Allow for a fast comparison process once a new session 
owner needs to be identified. 

• Scalability, i.e., performance should not degrade 
significantly when the number of sessions and suspects 
in the pool increases. 

• Flexibility, i.e., should allow new suspects to be 
included in the process, whenever information is 
available. 

This paper proposes a new method for identifying web 
users given a set of possible suspects. By using the web site 
access frequencies as a proxy for the individual behind a 
specific session, one can gather information on the user and 
identify other unidentified sessions.  

The first step in the proposed method is to gather the top-k 
site access frequencies in all known logs of each known user. 
An approximated algorithm is used for this purpose since 
classical exact top-k algorithms are inefficient and require the 
full list of distinct elements to be kept. The Filtered Space-
Saving algorithm [1], [7] is used for this purpose since it 
provides a fast and compact answer to the top-k problem 
although it only gives an approximate solution. This paper 
defends that the algorithm approximation is not an issue, as a 
degree of change or randomness has to be expected and 
incorporated into the detection method. 

Once the top-k site access frequencies are available, the 
fingerprint is constructed by applying a fuzzifying function to 
each frequency. This paper proposes the innovative method of 
fuzzifying the set of features based on their order on the top-k 
list instead of their frequency value. 

The last part in the process is to perform the same 
calculations for the session being identified and then to 
compare this fuzzy fingerprint with all the available users fuzzy 
fingerprints. The most similar fingerprint is chosen and the 
session is assigned to the fingerprint author. 

 

II. RELATION WITH PREVIOUS WORK 

A. Signatures and fingerprints 
Boltan and Hand [1] and Phua and al. [12] survey multiple 

methods for fraud detection using statistical and data-mining 
techniques but no mention is made of research aiming to 
identify individual fraudsters based on their behavior. A more 
common, although distinct, approach is the use of usage 
signatures but to detect behavior changes as in [3], [4] and [5]. 
Signatures are used to monitor the individual activity and 
detect changes in that activity, or to compare against known 
fraud signatures to detect similarity of patterns, not the 
individuals behind the fraud. In [3] and [5] signatures are 
created extracting relevant features out of the individual usage, 
such as  number of local, national and international calls, etc., 
based on pre-defined types of traffic classifications and 
summarized. In [5] a list of the top-k countries and destinations 

called, and a count of calls that do not go to any of the top-k is 
used but with the purpose of detecting changes in the usage. 

A recent work by Cormode et al. [1] presents the concept of 
signature algorithms applied to iterations between individuals 
and provides some signature schemes to network traffic and 
telecommunication calls. A generic approach and a theoretical 
framework for signatures communication graphs analysis are 
provided. The “signatures” concept has some common points 
to the proposed user fingerprint. However, one prefers to use 
the “fingerprint” designation, as the algorithm aims at 
extracting information about the user that he has not provided 
knowingly, while a “signature” usually refers to information 
that was created specifically to identify someone or something.  
In [1] the feature extraction is exact; the use of approximated 
algorithms is suggested and several distinct distances are 
proposed. 

B. Fuzzy Signatures 
The fuzzy fingerprint concept is a generalization of the 

Vector Valued Fuzzy Sets (VVFS) concept introduced by 
Kóczy [8]. The qualitative meaning of an object is represented 
by the quantities of the VVFS.  

The vector valued fuzzy sets concept has also been used in 
[9] to introduce the fuzzy signature concept. Fuzzy signatures 
can model sparse and hierarchically correlated data with the 
help of hierarchically structured VVFS and a set of not-
necessarily homogenous and hierarchically organized 
aggregation functions.  

 

III. THE FILTERED SPACE-SAVING ALGORITHM 
To allow the use of user identification techniques in near 

real time and for a large number of potential suspects and 
sessions, a key issue is to be able to extract the relevant features 
using an efficient algorithm with reduced memory usage. In 
this case, features are the most frequent visited sites in the user 
usage. The choice was to use an approximate top-k algorithm 
capable of generating good quality estimates using a reduced 
memory footprint. The Filtered Space-Saving algorithm [7] 
was chosen. Filtered Space-Saving, originally presented in [6], 
is an evolution from Space-Saving algorithm presented by 
Metwally and al. [10].  

The Filtered Space-Saving (FSS) algorithm uses a bitmap 
counter with h cells, each containing two values, αi and ci, 
standing for the error and the number of monitored elements in 
cell i. The hash function needs to be able to transform the input 
values (site) into an uniformly distributed integer range. The 
hashed value hash(x) is then used to increment the 
corresponding counter. Initially all values of αi and ci are set to 
0. 

The second storage element is a list of monitored elements 
A with size m. The list is initially empty. Each element contains 
three parts; the value itself vj, the estimate count fj and the 
associated error ej. 

The minimum required value to be included in the 
monitored list is always the minimum of the estimate counts, 



                                                                                        
 

µ= min {fj}. While the list has free elements, the minimum is 
set to 0. 
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Figure 1 – FSS Algorithm Diagram. 

The algorithm is quite simple. When a new element is 
received, its hash is calculated and the bitmap counter is 
checked. If there are already monitored elements with that 
same hash (ci > 0) the list is searched to see if this particular 
element is already there. If the element is in the list then the 
estimate count fj is incremented. If the element is not in the list 
then it is checked to see if it should be added. 

A new element will be inserted into the list if αi +1 ≥ µ. If 
the element is not monitored then αi is incremented. In fact this 
αi stands for the number of elements with hash value i that have 
not been counted in the monitored list; it is the maximum 
number of times an element that is not in the list and that has 
this hash value could have been observed. 

 
Algorithm: FSS(h cells, m counters, S stream) 
 
begin 
for each element, x, with value w, in S {  
 set min to min {fj} 
 let i be the hash(x) mod h 
 if ci is not 0 {  
  if x is monitored { 
   let j be the index of x in the list 
   increment fj   
   continue for next x 
  } 
 } // this will only be executed if x is not monitored 
 
 if  αi + 1 >= min {    
  if list size equals m { 
   let m be the index with lower fj   
   and for same fj with higher ej 
   let k be the hash(x) mod h 
   decrement ck 
   set αk = fi 
   remove vm 
  } 
  include x in the list in index j 
  set vj to x 
  set ej to αi and fj to αi+1   
  increment counter ci 
 } else { 
  increment αi    
 } 

}// end for 
end 

 
Figure 2 – The FSS Algorithm 

 

IV. THE FUZZY FINGERPRINT ALGORITHM 
The main concept behind this algorithm is that users have a 

stable enough behavior that allows a set of features to be 
extracted, fuzzified and then compared. The most frequent 
visited sites of a single user present the required stability. 

User web traffic can then be analyzed as a set of site 
accesses generated by a stable distribution that depends only on 
the user. Only site visit counts are in fact relevant and used as 
variables.  

The set of sites to consider in the fingerprint should be large 
enough to allow a comprehensive sample of the user behavior 
along time. The FSS algorithm requires two parameters, the 
size of the monitored list m and the size of the bitmap counter 
h. In all the tests the parameters were set proportional to the 
number of visited sites used in the fingerprint: 
m = 3k, h = 9k. 

A. Fuzzy Fingerprint Creation 
The full set of known texts are processed through the 

modified FSS algorithm to compute the approximated top-k list 
and frequencies for each user. Consider Tj is the set of logs by 
the user j. The result consists of a list of k tuplets {vi, ni} where 
vi is the i-th most frequent visited site and ni the corresponding 
count estimate. 

To create the actual fingerprint, the top-k list has to be 
fuzzified. The choice of the fuzzifying function is critical and 
the chosen approach is to assign a membership value to each 
site in the set based only on the order in the list. In fact, 
experiments have shown that the order of the frequency seems 
more relevant than its actual value. The more frequent sites will 
have a higher membership value. 

Several alternative membership attribution functions for 
each element i of the top-k list are tested in this paper. The 
simplest one is: 
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The third function is µerfc, based on the complementary 
error function: 
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where erf() is the Gauss error function. Figure 3 presents 
the used functions. 

The fingerprint based on the top-k list (size-k fingerprint, 
Φ), consists on a size-k fuzzy vector where each position i 
contains a element vi and a value µi representing the fuzzified 
value of vi’s rank (the membership of the rank).  
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Figure 3 – Fuzzyfying functions 

An user j will be represented by its fingerprint Φj = Φ(Tj). 
Formally, fingerprint  Φj  = {( vji ,μji)|i = 1..kj} has length kj, let 
Sj = {vji |i = 1..kj} be the set of v’s in Φj.The set of all user 
fingerprints will constitute the fingerprint library. 

B. Fuzzy Fingerprint Detection 
In order to find the user of an unknown session L, one starts 

by computing the size-k fingerprint of L, ΦL. Then one 
compares the fingerprint of L with the fingerprints Φj of all 
users present in the fingerprint library. The unknown user is 
identified as user j if he has the most similar fingerprint to ΦL. 
Fingerprint comparision, sim(ΦL, Φj), is calculated using (4):  

( )
,

min ( ), ( )
( )

L j

v L v j
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µ µ
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Φ Φ
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where µv(Φx) is the membership value associated with the rank 
of element v in fingerprint x. This function is based on the 
minimum or Gōdel t-norm, but other t-norms could be used.  

 

V. EXPERIMENTAL RESULTS 

A. Experimental data set 
Experiments were performed using a data set consisting of 

10 days of web logs collected from a large company (including 
a weekend, with much less records). The data is annonymized 
but every user in the web access record is identified by a 
unique tag. Records detailing access to .jpg, .bmp, .gif objects 
were filtered and are not present in the data set. Filtering the 
images from the web logs reduces the number records to circa 
10%. Note that this company has implemented a web access 
policy that limits access to some sites 

To create the suspect library the logs from the 8 initial days 
were used, constituting the training set. The sessions to be used 

as the test set were created with the remaining 2 days of web 
logs. A total of 21 669 597 records were included in the 
training set, and 6 621 078 records in the test set. Although 
both the training and test sets were created using a much 
reduced sample period, this may in fact be similar to real life 
situations where data is usually much less than ideal. 

A total of 1630 users were considered for these tests, each 
with a minimum 750 records in the training set and 250 records 
in the test set. Note that this is a small number of access 
records; many of the users generate more than a thousand 
records per day (excluding images).  

The site name and port part of the url were used as base 
features. Site name and port were prefered to the IP address 
because, first, many sites use multiple servers and IP addresses 
for load balancing, second, many sites share the same IP 
address as they are hosted in a single server, third, because with 
the emergence of cloud hosting services IP addresses are easily 
changed and the site name is what effectivly distinguishes one 
site from another. The use of the site name requires also 
requires some care as some services may use the name to 
convey some information for user or load distribution, in this 
case some cleaning is required to transform the site name and 
port to the generical format of server.domain:port or 
server.domain. 

Although the sample period is not long it is interesting to 
see the site access distribution per user. Figure 4 presents the 
percentage of accesses for each of the most visited sites of each 
user. On average 90% of the users accesses are made to just 55 
sites. Figure 4 also presents distribution of consecutive site 
accesses, and the mixture of the two distributions. Consecutive 
site accesses are relevant because one user may visit one site 
and then visit another. This path may be distinct from other 
users paths and helps distinguising the users. 
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Figure 4  – Web site accesses distribution 

B. Test methodology 
The distinct fuzzifying functions were tested on each of the 

available users and sessions. Each test returns a ranked list of 
the suspects. A test is considered to be positive if the real user 
is returned in the first position of the ranked list. Accuracy 
measures the ratio of positive tests for each of the function. For 



                                                                                        
 

each of the tested algorithms tests were performed for multiple 
values of k.  

To evaluate the accuracy of the proposed algorithms against 
crisp signature algorithms one will present experimental results 
obtained using equivalent methods proposed in [2]. In [2] a 
variety of distance functions were presented to compare 
signatures. They are generalized from known measures, and 
take into account both set overlap as well as weighted 
occurrence. In [2] signatures are k sized tuples with element vi 
and a value wi representing the frequency of the element. Each 
signature Ωi = {(vij ,wij)|j = 1..ki} has length ki, let Si = {vij |j = 
1..ki} be the set of v’s in Ωi. The distances considered were 
adapted from [2]: 
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It is easy to verify that all these distance functions yield 
values in [0, 1]. Djac is based on Jaccard coefficient, where the 
node weights are not taken into account; it is minimized when 
S1 = S2, and it equals 1 when their overlap is empty. Ddice is an 
scaled version of the distance based on Dice criterion, which 
factors in node weights; it gives an added premium if the 
individual weights in S1 and S2 are similar. Dhel is based on 
Hellinger distance .  

To better characterize the classifier response ROC curves 
are presented for every algorithm. ROC curves are a standard 
measure in statistics [10]. ROC curves map the ratio of false 
positives against the ratio of true positives, with the false 
positives in the x-axis and true positives in the y-axis. ROC 
curves were constructed by first running every test sample 
against the suspect library and obtaining a ranked list. Let T be 
the number of tests and U the number of suspects. The total 
number of elements in the answer lists is TU. The total number 
of positive tests is T (there is always one correct user for each 
unknown session) and the number of incorrect tests is T(U-1). 
The ROC curve starts at the origin (0, 0). For each rank, in 
ascending order, the number of positive tests p with that rank 
are used to draw a vertical line upwards by p/T. For the same 
rank a horizontal line is draw to the right by (T-p)/(T(U-1)). 

Also a standard measure in statistics, the Area Under the 
ROC Curve (AUC) [10] can also be computed. AUC is an 
indicator of the overall accuracy of the classifier, if the AUC is 
0.5, the classifier is no better than random selection; higher 
values indicate better precision. An AUC of 1 indicates a 
perfect classifier.  

C. Single site fuzzy fingerprints 
The first set of experiments use single site name and port 

fingerprints. Figure 5 presents the accuracy of fuzzy 
fingerprints using the three fuzzifying functions described and 
the results obtained using the three crisp distance functions. 
The difference between fuzzy and crisp algorithms is very 
significant. The fuzzy fingerprints deal better with the very 
sparse nature of the web accesses and significant differences of 
use in the training and test periods. Differences between the 
three proposed fuzzifying functions are not very relevant, the 
Pareto based function achieves the best results, followed 
closely by the complementary gaussian error function. These 
functions weight more the most frequent elements.  
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Figure 5  – Algorithms accuracy for single web site access 

Figure 6 presents the ROC curve for each of the tested 
algorithms. To better show the differences Figure 7 presents the 
zoom of the most relevant area of the ROC.   
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Figure 6  – Algorithms ROC for single web site access 
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Figure 7  – Detailed ROC for single web site access 

D. Consecutive sites fuzzy fingerprints 
The second set of experiments uses pairs of consecutive site 

name and port fingerprints. Figure 8 presents accuracy for each 
of the algorithms. Both crisp and fuzzy algorithms present 
better results, both can use the extra information contained in 
the order of the accesses. But this performance increase is only 
achieved at the expense of much higher number of top-k 
elements. Fuzzy algorithms perform much better than crisp 
algorithms but is interesting to see that the worst performing 
algorithm in the single site tests, the Jaccard based distance 
performes much better with consecutive sites. Fuzzy 
fingerprints using the Pareto based function achieves the best 
results, followed closely by the complementary gaussian error 
function.  
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Figure 8  – Algorithms accuracy for consecutive web site accesses 

Figure 9 presents the ROC curves. To better show the 
differences Figure 10 presents the zoom of the most relevant 
area of the ROC. 
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Figure 9  – Algorithms ROC for consecutive web site accesses 
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Figure 10  – Detailed ROC for consecutive web site accesses 

Interestingly the ROC shows that the Jaccard based 
distance behaves quite well overall. Although the accuracy of 
the top choice is not the best of all algorithms, it generates less 
false positives when the list is enlarged.  

 

 

 



                                                                                        
 

E. Mixture fuzzy fingerprints 
The final set of experiments use both the single site and 

pairs of consecutive site name and port fingerprints. Both 
elements are mixed in a single top-k list. Figure 11 presents the 
accuracy for each of the algorithms.  
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Figure 11  – Algorithms accuracy for mixture fingerprints 

Figure 12 and Figure 13 present the corresponting ROC 
curves. 

There is a slight increase in performance of all fuzzy 
algorithms and for the Jaccard based distance, a slight 
reduction for the Dice and Hellinger based distances.  The most 
relevant benefict for the use of the mixture is that performance 
remains stable for a wider range of k. For Pareto and 
complementary gaussian error based functions the performance 
remains stable between k values of 1000 to 2500.  
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Figure 12  – Algorithms ROC for mixture fingerprints 
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Figure 13  – Detailed ROC for mixture fingerprints 

Table I presents the peak performance values for all of the 
experiments and algorithms. It includes the Area Under the 
ROC Curve (AUC) [10]. AUC is an indicator of the overall 
accuracy of the classifier, if the AUC is 0.5, the classifier is no 
better than random selection; higher values indicate better 
precision. An AUC of 1 indicates a perfect classifier. 

TABLE I.  RESULTS FOR EXPERIMENTS WITH WEB SITE ACCESSES 

 Fuzzy Fingerprints Crisp Distances 

flat par erfc hell dice jac 

Tests 1630 1630 1630 1630 1630 1630 

Users 1630 1630 1630 1630 1630 1630 

Single 
Site 

Peak k 175 225 300 125 275 100 
Peak 

Accuracy 0,6589 0,6761 0,6669 0,5393 0,5037 0,5344 
AUC 0,9811 0,9848 0,9819 0,9792 0,9765 0,9810 

2  

Sites 

Peak k 700 1800 1300 1200 700 400 
Peak 

Accuracy 0,6847 0,6939 0,6926 0,5675 0,5325 0,6209 
AUC 0,9802 0,9809 0,9802 0,9822 0,9800 0,9840 

1+2 

Sites 

Peak k 1000 1900 2100 900 1700 500 
Peak 

Accuracy 0,6982 0,7049 0,7025 0,5589 0,5233 0,6374 
AUC 0,9807 0,9829 0,9798 0,9809 0,9786 0,9826 

 
 



                                                                                        
 

VI. CONCLUSIONS AND FUTURE WORK 
This work shows how fuzzy methods may be used to 

identify the users behind an unidentified web session. The use 
of simple fuzzy techniques based on approximate algorithms 
leads to very interesting results. 

The fact that the results remain stable for a wide range of 
values of k and for several fuzzification functions shows that 
the proposed method is robust.  

The large number of suspects it supports and the ability to 
include new suspects or update existing user fuzzy fingerprints 
is critical to the use of the method in long-term detection 
processes. New fuzzy fingerprints can be created and added to 
the suspect’s library at any time, and new session logs from 
known users can be added to the fuzzy fingerprint. Update to 
one fuzzy fingerprint does not influence all the others.  

In this work the method is applied to identifying a author 
within a list of possible suspects but it can also be applied to 
the single author problem or to the one or none author within a 
list by considering the distance (or the inverse comparison) 
between fuzzy fingerprints as a distinguishing feature. One can 
then apply a binary classifier, such as a Bayes classifier to 
determine if the author is a probable one. There is however a 
significant risk in reducing the complexity of a very high level 
dimension problem to a single dimension. A candidate should 
only be tested in this way if all other candidates have been 
eliminated (i.e., it should only be applied to the top of a list of 
suspects). 

The use of order information, by using consecutive events 
as base features, enriches the fingerprints, even with such as 
sparse data as web site names. One can expect that this 
approach could lead to even better improvements in domains 
where event order is more relevant. 

The proposed method should not be seen as a specific 
method; it can be used in other domains to identify individual 
behavior based on events. The proposed method will identify 
individuals as long as they present a stable event distribution. 
Future work should also test the inclusion of additional features 
available in the web logs. 
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