
Web User Identification with Fuzzy Fingerprints

Nuno Homem
TULisbon – Instituto Superior Técnico

INESC-ID
R. Alves Redol 9, 1000-029 Lisboa

nuno.homem@hotmail.com

Joao Paulo Carvalho
TULisbon – Instituto Superior Técnico

INESC-ID
R. Alves Redol 9, 1000-029 Lisboa

Portugal
joao.carvalho@inesc-id.pt

Abstract— Fingerprint identification is a well-known technique in
forensic sciences. The basic idea of identifying a subject based on
a set of features left by the subject actions or behavior can be
applied to other domains. Identifying a web user based on a user
fingerprint is one such application. This paper considers the
problem of extracting fingerprints from web usage logs and
matching them with those obtained from a set of known users. It
presents an innovative fuzzy fingerprint algorithm based on
vector valued fuzzy sets. Used sites are used as base features to
create the fingerprint. The assumption is that sites accessed by
each user remain approximately stable and are distinctive. The
paper presents the proposed algorithm and shows some
experimental results that validate the approach. The use of fast
and compact algorithms is critical due to the possible huge
number of users, and allows this method to be used on near real
time.

Keywords-component; fuzzy fingerprints, vector valued fuzzy
sets, similarity, frequent elements, approximate algorithms, data
streams

I. INTRODUCTION1
In this paper, one considers the problem of extracting a

fingerprint from web usage logs and then using that fingerprint
to identify the user behind a distinct web session.

Identifying users based in their previously known usage is a
known procedure in several areas such as telecommunications
and financial fraud detection. For security and judicial
purposes, identifying a user based on a specific usage behavior
is also relevant. These detection methods are based on the fact
that although a suspect or fraudster may present different
identification credentials or simply no identification at all, its
behavior and its relationships remain the same. Every
individual keeps some relationships and habits, either personal
or businesswise, stable for some time. Even if some of those
relationships and habits change along time (the individual starts
working in a different company, a distinct business, marries
another person, etc.), some will remain stable (same family,
some job, same interests). This provides the basis for the
fingerprint as relationships and habits are translated into usage
events. By using the destination number as a proxy for the
individual behind a specific communication event, we can

1 This work was in part supported by FCT (INESC-ID multi annual funding)
through the PIDDAC Program funds.

gather information out of a person’s calls to its relationship
network. The sites the user accesses in the web are also a clue
to the user habits and interests and therefore can be used to
identify him in a pool of suspected web sessions.

Within the scope of this paper, one will consider a web
session as the sequence of web log records that belong to a
single user, either known or unknown. For anonymous web
access, one will consider that some method is available to
group these records into a single session. Although out of the
scope of this paper, user identity could be linked to a single
fixed IP address or a single provider login.

Each web log record represents a user visit to a single web
site, regardless of the used protocol. The set of known users for
whom a fingerprint is available will constitute the suspects for
unknown user sessions identification.

Fingerprint identification is a well-known technique in
forensic sciences and widely documented. In computer
sciences a fingerprint is a procedure that maps an arbitrarily
large data item (such as a computer file, or author set of texts)
to a much compact information block, its fingerprint, that
uniquely identifies the original data for all practical purposes,
just as human fingerprints uniquely identify people for practical
purposes.

In computer sciences, fingerprints are typically used to
avoid the comparison and transmission of bulky data. For
example, a web browser or proxy server can efficiently check if
a remote file has been modified simply by fetching its
fingerprint and comparing it with the fingerprint of the
previously fetched copy. Fingerprints are a fast and compact
way to identify items.

To serve the user identification purposes, a fingerprint must
be able to capture the identity of that user. In other words, the
probability of a collision, i.e., two users yielding the same
fingerprint, must be small. The fingerprint has also to be
robust; a user should be identified even if he changes some
aspects of the web use. The idea of identifying users based on a
fingerprint is a very appealing one, because identification can
theoretically be made on near real time.

To be useful, the fingerprint should comply with some
basic criteria:

• Include a minimal set of features that describe the user
(the suspect) in a compact format.

• Allow for update operations whenever new information
(new logs) on the user is available.

• Allow for a fast comparison process once a new session
owner needs to be identified.

• Scalability, i.e., performance should not degrade
significantly when the number of sessions and suspects
in the pool increases.

• Flexibility, i.e., should allow new suspects to be
included in the process, whenever information is
available.

This paper proposes a new method for identifying web
users given a set of possible suspects. By using the web site
access frequencies as a proxy for the individual behind a
specific session, one can gather information on the user and
identify other unidentified sessions.

The first step in the proposed method is to gather the top-k
site access frequencies in all known logs of each known user.
An approximated algorithm is used for this purpose since
classical exact top-k algorithms are inefficient and require the
full list of distinct elements to be kept. The Filtered Space-
Saving algorithm [1], [7] is used for this purpose since it
provides a fast and compact answer to the top-k problem
although it only gives an approximate solution. This paper
defends that the algorithm approximation is not an issue, as a
degree of change or randomness has to be expected and
incorporated into the detection method.

Once the top-k site access frequencies are available, the
fingerprint is constructed by applying a fuzzifying function to
each frequency. This paper proposes the innovative method of
fuzzifying the set of features based on their order on the top-k
list instead of their frequency value.

The last part in the process is to perform the same
calculations for the session being identified and then to
compare this fuzzy fingerprint with all the available users fuzzy
fingerprints. The most similar fingerprint is chosen and the
session is assigned to the fingerprint author.

II. RELATION WITH PREVIOUS WORK

A. Signatures and fingerprints
Boltan and Hand [1] and Phua and al. [12] survey multiple

methods for fraud detection using statistical and data-mining
techniques but no mention is made of research aiming to
identify individual fraudsters based on their behavior. A more
common, although distinct, approach is the use of usage
signatures but to detect behavior changes as in [3], [4] and [5].
Signatures are used to monitor the individual activity and
detect changes in that activity, or to compare against known
fraud signatures to detect similarity of patterns, not the
individuals behind the fraud. In [3] and [5] signatures are
created extracting relevant features out of the individual usage,
such as number of local, national and international calls, etc.,
based on pre-defined types of traffic classifications and
summarized. In [5] a list of the top-k countries and destinations

called, and a count of calls that do not go to any of the top-k is
used but with the purpose of detecting changes in the usage.

A recent work by Cormode et al. [1] presents the concept of
signature algorithms applied to iterations between individuals
and provides some signature schemes to network traffic and
telecommunication calls. A generic approach and a theoretical
framework for signatures communication graphs analysis are
provided. The “signatures” concept has some common points
to the proposed user fingerprint. However, one prefers to use
the “fingerprint” designation, as the algorithm aims at
extracting information about the user that he has not provided
knowingly, while a “signature” usually refers to information
that was created specifically to identify someone or something.
In [1] the feature extraction is exact; the use of approximated
algorithms is suggested and several distinct distances are
proposed.

B. Fuzzy Signatures
The fuzzy fingerprint concept is a generalization of the

Vector Valued Fuzzy Sets (VVFS) concept introduced by
Kóczy [8]. The qualitative meaning of an object is represented
by the quantities of the VVFS.

The vector valued fuzzy sets concept has also been used in
[9] to introduce the fuzzy signature concept. Fuzzy signatures
can model sparse and hierarchically correlated data with the
help of hierarchically structured VVFS and a set of not-
necessarily homogenous and hierarchically organized
aggregation functions.

III. THE FILTERED SPACE-SAVING ALGORITHM
To allow the use of user identification techniques in near

real time and for a large number of potential suspects and
sessions, a key issue is to be able to extract the relevant features
using an efficient algorithm with reduced memory usage. In
this case, features are the most frequent visited sites in the user
usage. The choice was to use an approximate top-k algorithm
capable of generating good quality estimates using a reduced
memory footprint. The Filtered Space-Saving algorithm [7]
was chosen. Filtered Space-Saving, originally presented in [6],
is an evolution from Space-Saving algorithm presented by
Metwally and al. [10].

The Filtered Space-Saving (FSS) algorithm uses a bitmap
counter with h cells, each containing two values, αi and ci,
standing for the error and the number of monitored elements in
cell i. The hash function needs to be able to transform the input
values (site) into an uniformly distributed integer range. The
hashed value hash(x) is then used to increment the
corresponding counter. Initially all values of αi and ci are set to
0.

The second storage element is a list of monitored elements
A with size m. The list is initially empty. Each element contains
three parts; the value itself vj, the estimate count fj and the
associated error ej.

The minimum required value to be included in the
monitored list is always the minimum of the estimate counts,

µ= min {fj}. While the list has free elements, the minimum is
set to 0.

αi

ci

1 2 h-­‐1 h

•x hash(x)

1

vj fj ej

m

Monitored List

Bitmap	
 Counter

Figure 1 – FSS Algorithm Diagram.

The algorithm is quite simple. When a new element is
received, its hash is calculated and the bitmap counter is
checked. If there are already monitored elements with that
same hash (ci > 0) the list is searched to see if this particular
element is already there. If the element is in the list then the
estimate count fj is incremented. If the element is not in the list
then it is checked to see if it should be added.

A new element will be inserted into the list if αi +1 ≥ µ. If
the element is not monitored then αi is incremented. In fact this
αi stands for the number of elements with hash value i that have
not been counted in the monitored list; it is the maximum
number of times an element that is not in the list and that has
this hash value could have been observed.

Algorithm: FSS(h cells, m counters, S stream)

begin
for each element, x, with value w, in S {
 set min to min {fj}
 let i be the hash(x) mod h
 if ci is not 0 {
 if x is monitored {
 let j be the index of x in the list
 increment fj
 continue for next x
 }
 } // this will only be executed if x is not monitored

 if αi + 1 >= min {
 if list size equals m {
 let m be the index with lower fj
 and for same fj with higher ej
 let k be the hash(x) mod h
 decrement ck
 set αk = fi
 remove vm
 }
 include x in the list in index j
 set vj to x
 set ej to αi and fj to αi+1
 increment counter ci
 } else {
 increment αi
 }

}// end for
end

Figure 2 – The FSS Algorithm

IV. THE FUZZY FINGERPRINT ALGORITHM
The main concept behind this algorithm is that users have a

stable enough behavior that allows a set of features to be
extracted, fuzzified and then compared. The most frequent
visited sites of a single user present the required stability.

User web traffic can then be analyzed as a set of site
accesses generated by a stable distribution that depends only on
the user. Only site visit counts are in fact relevant and used as
variables.

The set of sites to consider in the fingerprint should be large
enough to allow a comprehensive sample of the user behavior
along time. The FSS algorithm requires two parameters, the
size of the monitored list m and the size of the bitmap counter
h. In all the tests the parameters were set proportional to the
number of visited sites used in the fingerprint:
m = 3k, h = 9k.

A. Fuzzy Fingerprint Creation
The full set of known texts are processed through the

modified FSS algorithm to compute the approximated top-k list
and frequencies for each user. Consider Tj is the set of logs by
the user j. The result consists of a list of k tuplets {vi, ni} where
vi is the i-th most frequent visited site and ni the corresponding
count estimate.

To create the actual fingerprint, the top-k list has to be
fuzzified. The choice of the fuzzifying function is critical and
the chosen approach is to assign a membership value to each
site in the set based only on the order in the list. In fact,
experiments have shown that the order of the frequency seems
more relevant than its actual value. The more frequent sites will
have a higher membership value.

Several alternative membership attribution functions for
each element i of the top-k list are tested in this paper. The
simplest one is:

()flat
k ii
k

µ
−

= . (1)

Function µpar, inspired in the Pareto rule, where 80% of the
membership value is assigned to first 20% elements in the
ranking:

1 (1)
()

1
par

ib if i a
ki

i aa if i a
k a

µ

⎧ − − <⎪⎪
= ⎨ −⎛ ⎞⎪ − ≥⎜ ⎟⎪ −⎝ ⎠⎩

 (2)

The third function is µerfc, based on the complementary
error function:

!

µerfc (i) =1" erf 2i
k

$
%

&

'
(, (3)

where erf() is the Gauss error function. Figure 3 presents
the used functions.

The fingerprint based on the top-k list (size-k fingerprint,
Φ), consists on a size-k fuzzy vector where each position i
contains a element vi and a value µi representing the fuzzified
value of vi’s rank (the membership of the rank).

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

k/5 k

μflat

μpar

μerfc

rank
Figure 3 – Fuzzyfying functions

An user j will be represented by its fingerprint Φj = Φ(Tj).
Formally, fingerprint Φj = {(vji ,μji)|i = 1..kj} has length kj, let
Sj = {vji |i = 1..kj} be the set of v’s in Φj.The set of all user
fingerprints will constitute the fingerprint library.

B. Fuzzy Fingerprint Detection
In order to find the user of an unknown session L, one starts

by computing the size-k fingerprint of L, ΦL. Then one
compares the fingerprint of L with the fingerprints Φj of all
users present in the fingerprint library. The unknown user is
identified as user j if he has the most similar fingerprint to ΦL.
Fingerprint comparision, sim(ΦL, Φj), is calculated using (4):

()
,

min (), ()
()

L j

v L v j
L j

v S S
sim

k
µ µ

∈ ∪

Φ Φ
Φ Φ = ∑ , (4)

where µv(Φx) is the membership value associated with the rank
of element v in fingerprint x. This function is based on the
minimum or Gōdel t-norm, but other t-norms could be used.

V. EXPERIMENTAL RESULTS

A. Experimental data set
Experiments were performed using a data set consisting of

10 days of web logs collected from a large company (including
a weekend, with much less records). The data is annonymized
but every user in the web access record is identified by a
unique tag. Records detailing access to .jpg, .bmp, .gif objects
were filtered and are not present in the data set. Filtering the
images from the web logs reduces the number records to circa
10%. Note that this company has implemented a web access
policy that limits access to some sites

To create the suspect library the logs from the 8 initial days
were used, constituting the training set. The sessions to be used

as the test set were created with the remaining 2 days of web
logs. A total of 21 669 597 records were included in the
training set, and 6 621 078 records in the test set. Although
both the training and test sets were created using a much
reduced sample period, this may in fact be similar to real life
situations where data is usually much less than ideal.

A total of 1630 users were considered for these tests, each
with a minimum 750 records in the training set and 250 records
in the test set. Note that this is a small number of access
records; many of the users generate more than a thousand
records per day (excluding images).

The site name and port part of the url were used as base
features. Site name and port were prefered to the IP address
because, first, many sites use multiple servers and IP addresses
for load balancing, second, many sites share the same IP
address as they are hosted in a single server, third, because with
the emergence of cloud hosting services IP addresses are easily
changed and the site name is what effectivly distinguishes one
site from another. The use of the site name requires also
requires some care as some services may use the name to
convey some information for user or load distribution, in this
case some cleaning is required to transform the site name and
port to the generical format of server.domain:port or
server.domain.

Although the sample period is not long it is interesting to
see the site access distribution per user. Figure 4 presents the
percentage of accesses for each of the most visited sites of each
user. On average 90% of the users accesses are made to just 55
sites. Figure 4 also presents distribution of consecutive site
accesses, and the mixture of the two distributions. Consecutive
site accesses are relevant because one user may visit one site
and then visit another. This path may be distinct from other
users paths and helps distinguising the users.

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0
10

00
11

00
12

00
13

00
14

00
15

00
16

00
17

00
18

00
19

00
20

00
21

00
22

00
23

00
24

00

fr
eq

Top-­‐k

sites

1+2-­‐sites

2-­‐sites

sites

Figure 4 – Web site accesses distribution

B. Test methodology
The distinct fuzzifying functions were tested on each of the

available users and sessions. Each test returns a ranked list of
the suspects. A test is considered to be positive if the real user
is returned in the first position of the ranked list. Accuracy
measures the ratio of positive tests for each of the function. For

each of the tested algorithms tests were performed for multiple
values of k.

To evaluate the accuracy of the proposed algorithms against
crisp signature algorithms one will present experimental results
obtained using equivalent methods proposed in [2]. In [2] a
variety of distance functions were presented to compare
signatures. They are generalized from known measures, and
take into account both set overlap as well as weighted
occurrence. In [2] signatures are k sized tuples with element vi
and a value wi representing the frequency of the element. Each
signature Ωi = {(vij ,wij)|j = 1..ki} has length ki, let Si = {vij |j =
1..ki} be the set of v’s in Ωi. The distances considered were
adapted from [2]:

1 2
1 2

1 2
(,) 1jac

S SD
S S
∩

Ω Ω = −
∪ (5)

1 2

1 2

1 2

1 2
1 2

min(,)
(,) 1

max(,)
v S S

dice

v S S

w w
D

w w
∈ ∩

∈ ∪

Ω Ω = −
∑

∑

 (6)

1 2

1 2

1 2

1 2
1 2

(,) 1
max(,)

v S S
hel

v S S

w w
D

w w

⋅

∈ ∩

∈ ∪

Ω Ω = −
∑

∑

 (7)

It is easy to verify that all these distance functions yield
values in [0, 1]. Djac is based on Jaccard coefficient, where the
node weights are not taken into account; it is minimized when
S1 = S2, and it equals 1 when their overlap is empty. Ddice is an
scaled version of the distance based on Dice criterion, which
factors in node weights; it gives an added premium if the
individual weights in S1 and S2 are similar. Dhel is based on
Hellinger distance .

To better characterize the classifier response ROC curves
are presented for every algorithm. ROC curves are a standard
measure in statistics [10]. ROC curves map the ratio of false
positives against the ratio of true positives, with the false
positives in the x-axis and true positives in the y-axis. ROC
curves were constructed by first running every test sample
against the suspect library and obtaining a ranked list. Let T be
the number of tests and U the number of suspects. The total
number of elements in the answer lists is TU. The total number
of positive tests is T (there is always one correct user for each
unknown session) and the number of incorrect tests is T(U-1).
The ROC curve starts at the origin (0, 0). For each rank, in
ascending order, the number of positive tests p with that rank
are used to draw a vertical line upwards by p/T. For the same
rank a horizontal line is draw to the right by (T-p)/(T(U-1)).

Also a standard measure in statistics, the Area Under the
ROC Curve (AUC) [10] can also be computed. AUC is an
indicator of the overall accuracy of the classifier, if the AUC is
0.5, the classifier is no better than random selection; higher
values indicate better precision. An AUC of 1 indicates a
perfect classifier.

C. Single site fuzzy fingerprints
The first set of experiments use single site name and port

fingerprints. Figure 5 presents the accuracy of fuzzy
fingerprints using the three fuzzifying functions described and
the results obtained using the three crisp distance functions.
The difference between fuzzy and crisp algorithms is very
significant. The fuzzy fingerprints deal better with the very
sparse nature of the web accesses and significant differences of
use in the training and test periods. Differences between the
three proposed fuzzifying functions are not very relevant, the
Pareto based function achieves the best results, followed
closely by the complementary gaussian error function. These
functions weight more the most frequent elements.

0,400

0,425

0,450

0,475

0,500

0,525

0,550

0,575

0,600

0,625

0,650

0,675

0,700

50 75 10
0

12
5

15
0

17
5

20
0

22
5

25
0

27
5

30
0

32
5

35
0

37
5

40
0

Pr
ec
isi
on

Top-­‐k

FF	
 flat

FF	
 par

FF	
 erfc

D	
 hel

D	
 dice

D	
 jac

Figure 5 – Algorithms accuracy for single web site access

Figure 6 presents the ROC curve for each of the tested
algorithms. To better show the differences Figure 7 presents the
zoom of the most relevant area of the ROC.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Tr
ue

	
 P
os
iti
ve
s

False	
 Positives

FF	
 flat

FF	
 par

FF	
 erfc

D	
 hell

D	
 dice

D	
 jac

Figure 6 – Algorithms ROC for single web site access

0,8

0,82

0,84

0,86

0,88

0,9

0,92

0,94

0,96

0,98

1

0 0,02 0,04 0,06 0,08 0,1 0,12 0,14 0,16 0,18 0,2

Tr
ue

	
 P
os
iti
ve
s

False	
 Positives

FF	
 flat

FF	
 par

FF	
 erfc

D	
 hell

D	
 dice

D	
 jac

Figure 7 – Detailed ROC for single web site access

D. Consecutive sites fuzzy fingerprints
The second set of experiments uses pairs of consecutive site

name and port fingerprints. Figure 8 presents accuracy for each
of the algorithms. Both crisp and fuzzy algorithms present
better results, both can use the extra information contained in
the order of the accesses. But this performance increase is only
achieved at the expense of much higher number of top-k
elements. Fuzzy algorithms perform much better than crisp
algorithms but is interesting to see that the worst performing
algorithm in the single site tests, the Jaccard based distance
performes much better with consecutive sites. Fuzzy
fingerprints using the Pareto based function achieves the best
results, followed closely by the complementary gaussian error
function.

0,450

0,475

0,500

0,525

0,550

0,575

0,600

0,625

0,650

0,675

0,700

0,725

0,750

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

21
00

22
00

23
00

24
00

25
00

Pr
ec
isi
on

Top-­‐k

FF	
 flat

FF	
 par

FF	
 erfc

D	
 hel

D	
 dice

D	
 jac

Figure 8 – Algorithms accuracy for consecutive web site accesses

Figure 9 presents the ROC curves. To better show the
differences Figure 10 presents the zoom of the most relevant
area of the ROC.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Tr
ue

	
 P
os
iti
ve
s

False	
 Positives

FF	
 flat

FF	
 par

FF	
 erfc

D	
 hell

D	
 dice

D	
 jac

Figure 9 – Algorithms ROC for consecutive web site accesses

0,8

0,82

0,84

0,86

0,88

0,9

0,92

0,94

0,96

0,98

1

0 0,02 0,04 0,06 0,08 0,1 0,12 0,14 0,16 0,18 0,2

Tr
ue

	
 P
os
iti
ve
s

False	
 Positives

FF	
 flat

FF	
 par

FF	
 erfc

D	
 hell

D	
 dice

D	
 jac

Figure 10 – Detailed ROC for consecutive web site accesses

Interestingly the ROC shows that the Jaccard based
distance behaves quite well overall. Although the accuracy of
the top choice is not the best of all algorithms, it generates less
false positives when the list is enlarged.

E. Mixture fuzzy fingerprints
The final set of experiments use both the single site and

pairs of consecutive site name and port fingerprints. Both
elements are mixed in a single top-k list. Figure 11 presents the
accuracy for each of the algorithms.

0,450

0,475

0,500

0,525

0,550

0,575

0,600

0,625

0,650

0,675

0,700

0,725

0,750

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

13
00

14
00

15
00

16
00

17
00

18
00

19
00

20
00

21
00

22
00

23
00

24
00

25
00

Pr
ec
isi
on

Top-­‐k

FF	
 flat

FF	
 par

FF	
 erfc

D	
 hel

D	
 dice

D	
 jac

Figure 11 – Algorithms accuracy for mixture fingerprints

Figure 12 and Figure 13 present the corresponting ROC
curves.

There is a slight increase in performance of all fuzzy
algorithms and for the Jaccard based distance, a slight
reduction for the Dice and Hellinger based distances. The most
relevant benefict for the use of the mixture is that performance
remains stable for a wider range of k. For Pareto and
complementary gaussian error based functions the performance
remains stable between k values of 1000 to 2500.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Tr
ue

	
 P
os
iti
ve
s

False	
 Positives

FF	
 flat

FF	
 par

FF	
 erfc

D	
 hell

D	
 dice

D	
 jac

Figure 12 – Algorithms ROC for mixture fingerprints

0,8

0,82

0,84

0,86

0,88

0,9

0,92

0,94

0,96

0,98

1

0 0,02 0,04 0,06 0,08 0,1 0,12 0,14 0,16 0,18 0,2

Tr
ue

	
 P
os
iti
ve
s

False	
 Positives

FF	
 flat

FF	
 par

FF	
 erfc

D	
 hell

D	
 dice

D	
 jac

Figure 13 – Detailed ROC for mixture fingerprints

Table I presents the peak performance values for all of the
experiments and algorithms. It includes the Area Under the
ROC Curve (AUC) [10]. AUC is an indicator of the overall
accuracy of the classifier, if the AUC is 0.5, the classifier is no
better than random selection; higher values indicate better
precision. An AUC of 1 indicates a perfect classifier.

TABLE I. RESULTS FOR EXPERIMENTS WITH WEB SITE ACCESSES

 Fuzzy Fingerprints Crisp Distances

flat par erfc hell dice jac

Tests 1630 1630 1630 1630 1630 1630

Users 1630 1630 1630 1630 1630 1630

Single
Site

Peak k 175 225 300 125 275 100
Peak

Accuracy 0,6589 0,6761 0,6669 0,5393 0,5037 0,5344
AUC 0,9811 0,9848 0,9819 0,9792 0,9765 0,9810

2

Sites

Peak k 700 1800 1300 1200 700 400
Peak

Accuracy 0,6847 0,6939 0,6926 0,5675 0,5325 0,6209
AUC 0,9802 0,9809 0,9802 0,9822 0,9800 0,9840

1+2

Sites

Peak k 1000 1900 2100 900 1700 500
Peak

Accuracy 0,6982 0,7049 0,7025 0,5589 0,5233 0,6374
AUC 0,9807 0,9829 0,9798 0,9809 0,9786 0,9826

VI. CONCLUSIONS AND FUTURE WORK
This work shows how fuzzy methods may be used to

identify the users behind an unidentified web session. The use
of simple fuzzy techniques based on approximate algorithms
leads to very interesting results.

The fact that the results remain stable for a wide range of
values of k and for several fuzzification functions shows that
the proposed method is robust.

The large number of suspects it supports and the ability to
include new suspects or update existing user fuzzy fingerprints
is critical to the use of the method in long-term detection
processes. New fuzzy fingerprints can be created and added to
the suspect’s library at any time, and new session logs from
known users can be added to the fuzzy fingerprint. Update to
one fuzzy fingerprint does not influence all the others.

In this work the method is applied to identifying a author
within a list of possible suspects but it can also be applied to
the single author problem or to the one or none author within a
list by considering the distance (or the inverse comparison)
between fuzzy fingerprints as a distinguishing feature. One can
then apply a binary classifier, such as a Bayes classifier to
determine if the author is a probable one. There is however a
significant risk in reducing the complexity of a very high level
dimension problem to a single dimension. A candidate should
only be tested in this way if all other candidates have been
eliminated (i.e., it should only be applied to the top of a list of
suspects).

The use of order information, by using consecutive events
as base features, enriches the fingerprints, even with such as
sparse data as web site names. One can expect that this
approach could lead to even better improvements in domains
where event order is more relevant.

The proposed method should not be seen as a specific
method; it can be used in other domains to identify individual
behavior based on events. The proposed method will identify
individuals as long as they present a stable event distribution.
Future work should also test the inclusion of additional features
available in the web logs.

REFERENCES

[1] R. Bolton and D. Hand, Statistical Fraud Detection: A Review,
Statistical Science, Vol. 17, No. 3, 235–255, 2002

[2] G. Cormode, F. Korn, S. Muthukrishnan, Yihua Wu, On signatures for
communication graphs, IEEE 24th International Conference on Data
Engineering (ICDE), 2008.

[3] C. Cortes and D. Pregibon, Signature-Based Methods for Data Streams.
Data Mining and Knowledge Discovery 5: 167-182, 2001

[4] T. Fawcett, and F. Provost, Activity monitoring: Noticing Interesting
Changes in Behavior. Proc. of SIGKDD99, 53-62, 1999

[5] P. Ferreira, R. Alves, O. Belo and L. Cortesão, Establishing Fraud
Detection Patterns Based on Signatures, Proceedings of the 6th
Industrial Conference on Data Mining, ICDM2006, Lecture Notes in
Computer Science, Springer, 2006

[6] N. Homem and J. Carvalho, Estimating Top-k Destinations in Data
Streams, Computational Intelligence for Knowledge-Based Systems
Design, Springer Berlin / Heidelberg, pages 290-299, 2010.

[7] N. Homem and J. Carvalho, Finding top-k elements in data streams,
Information Sciences, 180(24), pp. 4958-4974, Dec. 2010, Elsevier.

[8] L. Kóczy, Vector valued fuzzy sets, BUSEFAL- BULL STUD EXCH
FUZZIN APPL, pages 41–57, 1980.

[9] L. Kóczy, T. Vámos, G. Biró, Fuzzy signatures, in: EUROFUSE-SIC99,
1999.

[10] S. Mason and N. Graham, Areas beneath the relative operating
characteristics (ROC) and relative operating levels (ROL) curves:
Statistical significance and interpretation. Q. J. R. Meteorol. Soc,
30:291–303, 1982.

[11] A. Metwally, D. Agrawal and A. Abbadi, Efficient Computation of
Frequent and Top- k Elements in Data Streams, Technical Report 2005-
23, University of California, Santa Barbara, September 2005.

[12] C. Phua, V. Lee, K. Smith and R. Gayler, Comprehensive Survey of
Data Mining-based Fraud Detection Research, Artificial Intelligence
Review, 2005.

