Top-Down Parsing/Exercise 3
From Wiki**3
< Top-Down Parsing
Problem
Consider the following grammar, where G is the initial symbol and {a,b,c,d,e} is the set of terminal symbols:
O -> a G -> F c | O c d | (eps) F -> G b | O c F e
- Examine the grammar and rewrite it so that an LL(1) predictive parser can be built for the corresponding language.
- Compute the FIRST and FOLLOW sets for all non-terminal symbols in the new grammar and build the parse table.
- Show the analysis table (stack, input, and actions) for the parsing process of the acbec input sequence.
Solution
Something to keep in mind at all times: never eliminate the rules corresponding to the initial symbol
ELimination of Mutual Recursion: Expanding F in G
Initial grammar:
O -> a G -> F c | O c d | (eps) F -> G b | O c F e
Eliminating the singularity (O->a):
G -> F c | a c d | (eps) F -> G b | a c F e
Expanding F in G:
G -> G b c | a c F e c | a c d | (eps) F -> G b | a c F e
Eliminating left recursion in G:
G -> a c F e c G' | a c d G' | G' G' -> b c G' | (eps) F -> G b | a c F e
Factoring G prefixes:
G -> a c G" | b c G' | (eps) G' -> b c G' | (eps) G" -> F e c G' | d G' F -> a c G" b | b c G' b | b | a c F e
Factoring F prefixes:
G -> a c G" | b c G' | (eps) G' -> b c G' | (eps) G" -> F e c G' | d G' F -> a c F' | b F" F' -> G" b | F e F" -> c G' b | (eps)
Eliminating non-terminal left corners (note that F becomes unreachable):
G -> a c G" | b c G' | (eps) G' -> b c G' | (eps) G" -> a c F' e c G' | b F" e c G' | d G' F' -> a c F' e c G' b | b F" e c G' b | d G' b | a c F' e | b F" e F" -> c G' b | (eps)
Factoring F' prefixes, we get to the final version:
G -> a c G" | b c G' | (eps) G' -> b c G' | (eps) G" -> a c F' e c G' | b F" e c G' | d G' F' -> a c F' e F" | b F" e F" | d G' b F" -> c G' b | (eps)