Theoretical Aspects of Lexical Analysis/Exercise 3

From Wiki**3

< Theoretical Aspects of Lexical Analysis
Revision as of 04:05, 22 March 2009 by Root (talk | contribs)

Use Thompson's algorithm to build the NFA for the following regular expression. Build the corresponding DFA and minimize it.

  • ((ε|a)b)*

NFA

The following is the result of applying Thompson's algorithm.

<graph> digraph nfa {

    { node [shape=circle style=invis] start }
 rankdir=LR; ratio=0.5
 node [shape=doublecircle,fixedsize=true,width=0.2,fontsize=10]; 8
 node [shape=circle,fixedsize=true,width=0.2,fontsize=10];
 start -> 0
 0 -> 1; 0 -> 8
 1 -> 2; 1 -> 4
 2 -> 3;
 3 -> 6
 4 -> 5 [label="a",fontsize=10]
 5 -> 6
 6 -> 7 [label="b",fontsize=10]
 7 -> 1; 7 -> 8
 fontsize=10
 //label="NFA for ((ε|a)b)*"

} </graph>

DFA

Determination table for the above NFA:

In α∈Σ move(In, α) ε-closure(move(In, α)) In+1 = ε-closure(move(In, α))
- - 0 0, 1, 2, 3, 4, 6, 8 0
0 a 5 5, 6 1
0 b 7 1, 2, 3, 4, 6, 7, 8 2
1 a - - -
1 b 7 1, 2, 3, 4, 6, 7, 8 2
2 a 5 5, 6 1
2 b 7 1, 2, 3, 4, 6, 7, 8 2
Graphically, the DFA is represented as follows:

<graph> digraph dfa {

    { node [shape=circle style=invis] start }
 rankdir=LR; ratio=0.5
 node [shape=doublecircle,fixedsize=true,width=0.2,fontsize=10]; 0 2
 node [shape=circle,fixedsize=true,width=0.2,fontsize=10];
 start -> 0
 0 -> 1 [label="a"]
 0 -> 2 [label="b"]
 1 -> 2  [label="b"]
 2 -> 1 [label="a"]
 2 -> 2 [label="b"]
 fontsize=10
 //label="DFA for ((ε|a)b)*"

} </graph>

Given the minimization tree to the right, the final minimal DFA is: <graph> digraph dfamin {

    { node [shape=circle style=invis] start }
 rankdir=LR; ratio=0.5
 node [shape=doublecircle,fixedsize=true,width=0.3,fontsize=10]; 02
 node [shape=circle,fixedsize=true,width=0.2,fontsize=10]; 1
 start -> 02
 02 -> 1 [label="a"]
 02 -> 02 [label="b"]
 1 -> 02 [label="b"]
 fontsize=10
 //label="DFA for (a|b)*"

} </graph>

The minimization tree is as follows. As can be seen, the states are indistinguishable.

<graph> digraph mintree {

 node [shape=none,fixedsize=true,width=0.2,fontsize=10]
 "{0, 1, 2}" -> "{1}" [label="NF",fontsize=10]
 "{0, 1, 2}" -> "{0, 2}" [label="  F",fontsize=10]
 "{0, 2}" -> "{0,2} " [label="  a,b",fontsize=10]
 fontsize=10
 //label="Minimization tree"

} </graph>