Theoretical Aspects of Lexical Analysis/Exercise 3
From Wiki**3
< Theoretical Aspects of Lexical Analysis
Use Thompson's algorithm to build the NFA for the following regular expression. Build the corresponding DFA and minimize it.
- ((ε|a)b)*
NFA
The following is the result of applying Thompson's algorithm.
<graph> digraph nfa {
{ node [shape=circle style=invis] start } rankdir=LR; ratio=0.5 node [shape=doublecircle,fixedsize=true,width=0.2,fontsize=10]; 8 node [shape=circle,fixedsize=true,width=0.2,fontsize=10]; start -> 0 0 -> 1; 0 -> 8 1 -> 2; 1 -> 4 2 -> 3; 3 -> 6 4 -> 5 [label="a",fontsize=10] 5 -> 6 6 -> 7 [label="b",fontsize=10] 7 -> 1; 7 -> 8 fontsize=10 //label="NFA for ((ε|a)b)*"
} </graph>
DFA
Determination table for the above NFA:
In | α∈Σ | move(In, α) | ε-closure(move(In, α)) | In+1 = ε-closure(move(In, α)) |
---|---|---|---|---|
- | - | 0 | 0, 1, 2, 3, 4, 6, 8 | 0 |
0 | a | 5 | 5, 6 | 1 |
0 | b | 7 | 1, 2, 3, 4, 6, 7, 8 | 2 |
1 | a | - | - | - |
1 | b | 7 | 1, 2, 3, 4, 6, 7, 8 | 2 |
2 | a | 5 | 5, 6 | 1 |
2 | b | 7 | 1, 2, 3, 4, 6, 7, 8 | 2 |
Graphically, the DFA is represented as follows:
<graph> digraph dfa { { node [shape=circle style=invis] start } rankdir=LR; ratio=0.5 node [shape=doublecircle,fixedsize=true,width=0.2,fontsize=10]; 0 2 node [shape=circle,fixedsize=true,width=0.2,fontsize=10]; start -> 0 0 -> 1 [label="a"] 0 -> 2 [label="b"] 1 -> 2 [label="b"] 2 -> 1 [label="a"] 2 -> 2 [label="b"] fontsize=10 //label="DFA for ((ε|a)b)*" } </graph> Given the minimization tree to the right, the final minimal DFA is: <graph> digraph dfamin { { node [shape=circle style=invis] start } rankdir=LR; ratio=0.5 node [shape=doublecircle,fixedsize=true,width=0.3,fontsize=10]; 02 node [shape=circle,fixedsize=true,width=0.2,fontsize=10]; 1 start -> 02 02 -> 1 [label="a"] 02 -> 02 [label="b"] 1 -> 02 [label="b"] fontsize=10 //label="DFA for (a|b)*" } </graph> |
The minimization tree is as follows.
<graph> digraph mintree { node [shape=none,fixedsize=true,width=0.2,fontsize=10] "{0, 1, 2}" -> "{1}" [label="NF",fontsize=10] "{0, 1, 2}" -> "{0, 2}" [label=" F",fontsize=10] "{0, 2}" -> "{0,2} " [label=" a,b",fontsize=10] fontsize=10 //label="Minimization tree" } </graph> |
---|