Theoretical Aspects of Lexical Analysis/Exercise 4
From Wiki**3
< Theoretical Aspects of Lexical Analysis
Use Thompson's algorithm to build the NFA for the following regular expression. Build the corresponding DFA and minimize it.
- (a|b)*abb(a|b)*
NFA
The following is the result of applying Thompson's algorithm.
<graph> digraph nfa {
    { node [shape=circle style=invis] s }
 rankdir=LR; ratio=0.5
 node [shape=doublecircle,fixedsize=true,width=0.2,fontsize=10]; 17
 node [shape=circle,fixedsize=true,width=0.2,fontsize=10];
s -> 0 0 -> 1 1 -> 2 1 -> 4 2 -> 3 [label="a",fontsize=10] 4 -> 5 [label="b",fontsize=10] 3 -> 6 5 -> 6 6 -> 1 6 -> 7 0 -> 7
7 -> 8 [label="a",fontsize=10] 8 -> 9 [label="b",fontsize=10] 9 -> 10 [label="b",fontsize=10]
10 -> 11 11 -> 12 11 -> 14 12 -> 13 [label="a",fontsize=10] 14 -> 15 [label="b",fontsize=10] 13 -> 16 15 -> 16 16 -> 11 16 -> 17 10 -> 17
fontsize=10 //label="NFA for (a|b)*abb(a|b)*"
} </graph>
DFA
Determination table for the above NFA:
| In | α∈Σ | move(In, α) | ε-closure(move(In, α)) | In+1 = ε-closure(move(In, α)) | 
|---|---|---|---|---|
| - | - | 0 | 0, 1, 2, 4, 7 | 0 | 
| 0 | a | 3, 8 | 1, 2, 3, 4, 6, 7, 8 | 1 | 
| 0 | b | 5 | 1, 2, 4, 5, 6, 7 | 2 | 
| 1 | a | 3, 8 | 1, 2, 3, 4, 6, 7, 8 | 1 | 
| 1 | b | 5, 9 | 1, 2, 4, 5, 6, 7, 9 | 3 | 
| 2 | a | 3, 8 | 1, 2, 3, 4, 6, 7, 8 | 1 | 
| 2 | b | 5 | 1, 2, 4, 5, 6, 7 | 2 | 
| 3 | a | 3, 8 | 1, 2, 3, 4, 6, 7, 8 | 1 | 
| 3 | b | 5, 10 | 1, 2, 4, 5, 6, 7, 10, 11, 12, 14, 17 | 4 | 
| 4 | a | 3, 8, 13 | 1, 2, 3, 4, 6, 7, 8, 11, 12, 13, 14, 16, 17 | 5 | 
| 4 | b | 5, 15 | 1, 2, 4, 5, 6, 7, 11, 12, 14, 15, 16, 17 | 6 | 
| 5 | a | 3, 8, 13 | 1, 2, 3, 4, 6, 7, 8, 11, 12, 13, 14, 16, 17 | 5 | 
| 5 | b | 5, 9, 15 | 1, 2, 4, 5, 6, 7, 9, 11, 12, 14, 15, 16, 17 | 7 | 
| 6 | a | 3, 8, 13 | 1, 2, 3, 4, 6, 7, 8, 11, 12, 13, 14, 16, 17 | 5 | 
| 6 | b | 5, 15 | 1, 2, 4, 5, 6, 7, 11, 12, 14, 15, 16, 17 | 6 | 
| 7 | a | 3, 8, 13 | 1, 2, 3, 4, 6, 7, 8, 11, 12, 13, 14, 16, 17 | 5 | 
| 7 | b | 5, 10, 15 | 1, 2, 4, 5, 6, 7, 10, 11, 12, 14, 15, 16, 17 | 8 | 
| 8 | a | 3, 8, 13 | 1, 2, 3, 4, 6, 7, 8, 11, 12, 13, 14, 16, 17 | 5 | 
| 8 | b | 5, 15 | 1, 2, 4, 5, 6, 7, 11, 12, 14, 15, 16, 17 | 6 | 
| Graphically, the DFA is represented as follows: <graph> digraph dfa {     { node [shape=circle style=invis] s }
 rankdir=LR; ratio=0.5
 node [shape=doublecircle,fixedsize=true,width=0.2,fontsize=10]; 4 5 6 7 8
 node [shape=circle,fixedsize=true,width=0.2,fontsize=10];
 s -> 0
 0 -> 1 [label="a",fontsize=10]
 0 -> 2 [label="b",fontsize=10]
 1 -> 1  [label="a",fontsize=10]
 1 -> 3  [label="b",fontsize=10]
 2 -> 1 [label="a",fontsize=10]
 2 -> 2 [label="b",fontsize=10]
 3 -> 1 [label="a",fontsize=10]
 3 -> 4 [label="b",fontsize=10]
 4 -> 5 [label="a",fontsize=10]
 4 -> 6 [label="b",fontsize=10]
 5 -> 5 [label="a",fontsize=10]
 5 -> 7 [label="b",fontsize=10]
 6 -> 5 [label="a",fontsize=10]
 6 -> 6 [label="b",fontsize=10]
 7 -> 5 [label="a",fontsize=10]
 7 -> 8 [label="b",fontsize=10]
 8 -> 5 [label="a",fontsize=10]
 8 -> 6 [label="b",fontsize=10]
 fontsize=10
 //label="DFA for (a|b)*abb(a|b)*"
} </graph> Given the minimization tree to the right, the final minimal DFA is: <graph> digraph dfamin {     { node [shape=circle style=invis] s }
 rankdir=LR; ratio=0.5
 node [shape=doublecircle,fixedsize=true,width=0.4,fontsize=10]; 456
 node [shape=circle,fixedsize=true,width=0.3,fontsize=10];
 s -> 02
 02 -> 1 [label="a",fontsize=10]
 02 -> 02 [label="b",fontsize=10]
 1 -> 1  [label="a",fontsize=10]
 1 -> 3  [label="b",fontsize=10]
 3 -> 1 [label="a",fontsize=10]
 3 -> 456 [label="b",fontsize=10]
 456 -> 456 [label="a",fontsize=10]
 456 -> 456 [label="b",fontsize=10]
 fontsize=10
 //label="DFA for (a|b)*abb(a|b)*"
} </graph> | The minimization tree is as follows. <graph> digraph mintree {  node [shape=none,fixedsize=true,width=0.3,fontsize=10]
 "{0, 1, 2, 3, 4, 5, 6}" -> "{0, 1, 2, 3}" [label="NF",fontsize=10]
 "{0, 1, 2, 3, 4, 5, 6}" -> "{4, 5, 6}" [label="  F",fontsize=10]
 //"{0, 1, 2, 3}" -> "{0, 1, 2, 3} " [label="  a",fontsize=10]
 "{0, 1, 2, 3}" ->  "{0, 1, 2}"
 "{0, 1, 2, 3}" -> "{3} " [label="  b",fontsize=10]
 "{0, 1, 2}" -> "{0, 2} "
 "{0, 1, 2}" -> "{1} " [label="  b",fontsize=10]
 fontsize=10
 //label="Minimization tree"
} </graph> The tree expansion for non-splitting sets has been omitted for simplicity ("a" transition for non-final states and the {0, 2} "a" and "b" transitions. The final states are all indistinguishable, regarding either "a" or "b" transitions. | 
|---|