Theoretical Aspects of Lexical Analysis/Exercise 4
From Wiki**3
< Theoretical Aspects of Lexical Analysis
Use Thompson's algorithm to build the NFA for the following regular expression. Build the corresponding DFA and minimize it.
- (a|b)*abb(a|b)*
NFA
The following is the result of applying Thompson's algorithm.
<graph> digraph nfa {
{ node [shape=circle style=invis] s } rankdir=LR; ratio=0.5 node [shape=doublecircle,fixedsize=true,width=0.2,fontsize=10]; 17 node [shape=circle,fixedsize=true,width=0.2,fontsize=10];
s -> 0 0 -> 1 1 -> 2 1 -> 4 2 -> 3 [label="a",fontsize=10] 4 -> 5 [label="b",fontsize=10] 3 -> 6 5 -> 6 6 -> 1 6 -> 7 0 -> 7
7 -> 8 [label="a",fontsize=10] 8 -> 9 [label="b",fontsize=10] 9 -> 10 [label="b",fontsize=10]
10 -> 11 11 -> 12 11 -> 14 12 -> 13 [label="a",fontsize=10] 14 -> 15 [label="b",fontsize=10] 13 -> 16 15 -> 16 16 -> 11 16 -> 17 10 -> 17
fontsize=10 //label="NFA for (a|b)*abb(a|b)*"
} </graph>
DFA
Determination table for the above NFA:
In | α∈Σ | move(In, α) | ε-closure(move(In, α)) | In+1 = ε-closure(move(In, α)) |
---|---|---|---|---|
- | - | 0 | 0, 1, 2, 4, 7 | 0 |
0 | a | 3, 8 | 1, 2, 3, 4, 6, 7, 8 | 1 |
0 | b | 5 | 1, 2, 4, 5, 6, 7 | 2 |
1 | a | 3, 8 | 1, 2, 3, 4, 6, 7, 8 | 1 |
1 | b | 5, 9 | 1, 2, 4, 5, 6, 7, 9 | 3 |
2 | a | 3, 8 | 1, 2, 3, 4, 6, 7, 8 | 1 |
2 | b | 5 | 1, 2, 4, 5, 6, 7 | 2 |
3 | a | 3, 8 | 1, 2, 3, 4, 6, 7, 8 | 1 |
3 | b | 5, 10 | 1, 2, 4, 5, 6, 7, 10, 11, 12, 14, 17 | 4 |
4 | a | 3, 8, 13 | 1, 2, 3, 4, 6, 7, 8, 11, 12, 13, 14, 16, 17 | 5 |
4 | b | 5, 15 | 1, 2, 4, 5, 6, 7, 11, 12, 14, 15, 16, 17 | 6 |
5 | a | 3, 8, 13 | 1, 2, 3, 4, 6, 7, 8, 11, 12, 13, 14, 16, 17 | 5 |
5 | b | 5, 9, 15 | 1, 2, 4, 5, 6, 7, 9, 11, 12, 14, 15, 16, 17 | 7 |
6 | a | 3, 8, 13 | 1, 2, 3, 4, 6, 7, 8, 11, 12, 13, 14, 16, 17 | 5 |
6 | b | 5, 15 | 1, 2, 4, 5, 6, 7, 11, 12, 14, 15, 16, 17 | 6 |
7 | a | 3, 8, 13 | 1, 2, 3, 4, 6, 7, 8, 11, 12, 13, 14, 16, 17 | 5 |
7 | b | 5, 10, 15 | 1, 2, 4, 5, 6, 7, 10, 11, 12, 14, 15, 16, 17 | 8 |
8 | a | 3, 8, 13 | 1, 2, 3, 4, 6, 7, 8, 11, 12, 13, 14, 16, 17 | 5 |
8 | b | 5, 15 | 1, 2, 4, 5, 6, 7, 11, 12, 14, 15, 16, 17 | 6 |
Graphically, the DFA is represented as follows:
<graph> digraph dfa {
{ node [shape=circle style=invis] s } rankdir=LR; ratio=0.5 node [shape=doublecircle,fixedsize=true,width=0.2,fontsize=10]; 4 5 6 7 8 node [shape=circle,fixedsize=true,width=0.2,fontsize=10]; s -> 0 0 -> 1 [label="a",fontsize=10] 0 -> 2 [label="b",fontsize=10] 1 -> 1 [label="a",fontsize=10] 1 -> 3 [label="b",fontsize=10] 2 -> 1 [label="a",fontsize=10] 2 -> 2 [label="b",fontsize=10] 3 -> 1 [label="a",fontsize=10] 3 -> 4 [label="b",fontsize=10] 4 -> 5 [label="a",fontsize=10] 4 -> 6 [label="b",fontsize=10] 5 -> 5 [label="a",fontsize=10] 5 -> 7 [label="b",fontsize=10] 6 -> 5 [label="a",fontsize=10] 6 -> 6 [label="b",fontsize=10] 7 -> 5 [label="a",fontsize=10] 7 -> 8 [label="b",fontsize=10] 8 -> 5 [label="a",fontsize=10] 8 -> 6 [label="b",fontsize=10] fontsize=10 //label="DFA for (a|b)*abb(a|b)*"
} </graph>
Minimal DFA
The minimization tree is as follows.
<graph> digraph mintree {
node [shape=none,fixedsize=true,width=0.7,fontsize=10] "{0, 1, 2, 3, 4, 5, 6, 7, 8} " -> "{0, 1, 2, 3}" [label="NF",fontsize=10] "{0, 1, 2, 3, 4, 5, 6, 7, 8} " -> "{4, 5, 6, 7, 8}" [label=" F",fontsize=10] "{0, 1, 2, 3}" -> "{0, 1, 2}" "{0, 1, 2, 3}" -> "{3} " [label=" b",fontsize=10] "{0, 1, 2}" -> "{0, 2} " "{0, 1, 2}" -> "{1} " [label=" b",fontsize=10] fontsize=10 //label="Minimization tree"
} </graph>
The tree expansion for non-splitting sets has been omitted for simplicity ("a" transition for non-final states and the {0, 2} "a" and "b" transitions. The final states are all indistinguishable, regarding either "a" or "b" transitions.
Given the minimization tree above, the final minimal DFA is: <graph> digraph dfamin {
{ node [shape=circle style=invis] s } rankdir=LR; ratio=0.5 node [shape=doublecircle,fixedsize=true,width=0.4,fontsize=10]; 456 node [shape=circle,fixedsize=true,width=0.3,fontsize=10]; s -> 02 02 -> 1 [label="a",fontsize=10] 02 -> 02 [label="b",fontsize=10] 1 -> 1 [label="a",fontsize=10] 1 -> 3 [label="b",fontsize=10] 3 -> 1 [label="a",fontsize=10] 3 -> 456 [label="b",fontsize=10] 45678 -> 45678 [label="a",fontsize=10] 45678 -> 45678 [label="b",fontsize=10] fontsize=10 //label="DFA for (a|b)*abb(a|b)*"
} </graph>