Theoretical Aspects of Lexical Analysis/Exercise 15
From Wiki**3
< Theoretical Aspects of Lexical Analysis
Compute the non-deterministic finite automaton (NFA) by using Thompson's algorithm. Compute the minimal deterministic finite automaton (DFA).
The alphabet is Σ = { a, b, c }. Indicate the number of processing steps for the given input string.
- G = { a*|c, a|b*, bc* }, input string = aaabcacc
NFA
The following is the result of applying Thompson's algorithm. State 8 recognizes the first expression (token T1); state 16 recognizes token T2; and state 21 recognizes token T3.
<graph> digraph nfa {
{ node [shape=circle style=invis] s } rankdir=LR; ratio=0.5 node [shape=doublecircle,fixedsize=true,width=0.2,fontsize=10]; 8 16 21 node [shape=circle,fixedsize=true,width=0.2,fontsize=10];
s -> 0
0 -> 1 1 -> 2 1 -> 6 2 -> 3 2 -> 5 3 -> 4 [label="a",fontsize=10] 4 -> 3 4 -> 5 6 -> 7 [label="c",fontsize=10] 7 -> 8 5 -> 8
0 -> 9 9 -> 10 9 -> 12 10 -> 11 [label="a",fontsize=10] 12 -> 13 12 -> 15 13 -> 14 [label="b",fontsize=10] 14 -> 13 14 -> 15 15 -> 16 11 -> 16
0 -> 17 17 -> 18 [label="b",fontsize=10] 18 -> 19 18 -> 21 19 -> 20 [label="c",fontsize=10] 20 -> 19 20 -> 21
fontsize=10
} </graph>
DFA
Determination table for the above NFA:
In | α∈Σ | move(In, α) | ε-closure(move(In, α)) | In+1 = ε-closure(move(In, α)) |
---|---|---|---|---|
- | - | 0 | 0, 1, 2, 3, 5, 6, 8, 9, 10, 12, 13, 15, 16, 17 | 0 (T1) |
0 | a | 4, 11 | 3, 4, 5, 8, 11, 16 | 1 (T1) |
0 | b | 14, 18 | 13, 14, 15, 16, 18, 19, 21 | 2 (T2) |
0 | c | 7 | 7, 8 | 3 (T1) |
1 | a | 4 | 3, 4, 5, 8 | 4 (T1) |
1 | b | - | - | - |
1 | c | - | - | - |
2 | a | - | - | - |
2 | b | 14 | 13, 14, 15, 16 | 5 (T2) |
2 | c | 20 | 19, 20, 21 | 6 (T3) |
3 | a | - | - | - |
3 | b | - | - | - |
3 | c | - | - | - |
4 | a | 4 | 3, 4, 5, 8 | 4 (T1) |
4 | b | - | - | - |
4 | c | - | - | - |
5 | a | - | - | - |
5 | b | 4 | 3, 4, 5, 8 | 4 (T1) |
5 | c | - | - | - |
6 | a | - | - | - |
6 | b | - | - | - |
6 | c | 20 | 19, 20, 21 | 6 (T3) |
Graphically, the DFA is represented as follows:
<graph> digraph dfa {
{ node [shape=circle style=invis] s } rankdir=LR; ratio=0.5 node [shape=doublecircle,fixedsize=true,width=0.2,fontsize=10]; 0 1 2 3 4 5 6 node [shape=circle,fixedsize=true,width=0.2,fontsize=10]; s -> 0 0 -> 1 [label="a",fontsize=10] 0 -> 2 [label="b",fontsize=10] 0 -> 3 [label="c",fontsize=10] 1 -> 4 [label="a",fontsize=10] 2 -> 5 [label="b",fontsize=10] 2 -> 6 [label="c",fontsize=10] 4 -> 4 [label="a",fontsize=10] 5 -> 5 [label="b",fontsize=10] 6 -> 6 [label="c",fontsize=10] fontsize=10
} </graph>
The minimization tree is as follows. Note that before considering transition behavior, states are split according to the token they recognize.
<graph> digraph mintree {
node [shape=none,fixedsize=true,width=0.3,fontsize=10] "{0, 1, 2, 3, 4, 5, 6}" -> "{} " [label="NF",fontsize=10] "{0, 1, 2, 3, 4, 5, 6}" -> "{0, 1, 2, 3, 4, 5, 6} " [label=" F",fontsize=10] "{0, 1, 2, 3, 4, 5, 6} " -> "{0, 1, 3, 4}" [label=" T1",fontsize=10] "{0, 1, 2, 3, 4, 5, 6} " -> "{2, 5}" [label=" T2",fontsize=10] "{0, 1, 2, 3, 4, 5, 6} " -> "{6}" [label=" T3",fontsize=10] "{0, 1, 3, 4}" -> "{0, 1, 4}" [label=" a",fontsize=10] "{0, 1, 3, 4}" -> "{3}" //[label=" a",fontsize=10] "{2, 5}" -> "{2}" [label=" c",fontsize=10] "{2, 5}" -> "{5}" //[label=" c",fontsize=10] "{0, 1, 4}" -> "{0}" [label=" b",fontsize=10] "{0, 1, 4}" -> "{1, 4}" //[label=" b",fontsize=10] "{1, 4}" -> "{1, 4} " [label=" a, b, c",fontsize=10] fontsize=10 //label="Minimization tree"
} </graph>
Given the minimization tree, the final minimal DFA is as follows.
<graph> digraph dfa {
{ node [shape=circle style=invis] s } rankdir=LR; ratio=0.5 node [shape=doublecircle,fixedsize=true,width=0.2,fontsize=10]; 0 14 2 3 5 6 node [shape=circle,fixedsize=true,width=0.2,fontsize=10]; s -> 0 0 -> 14 [label="a",fontsize=10] 0 -> 2 [label="b",fontsize=10] 0 -> 3 [label="c",fontsize=10] 14 -> 14 [label="a",fontsize=10] 2 -> 5 [label="b",fontsize=10] 2 -> 6 [label="c",fontsize=10] 5 -> 5 [label="b",fontsize=10] 6 -> 6 [label="c",fontsize=10] fontsize=10
} </graph>
Input Analysis
In | Input | In+1 / Token |
---|---|---|
0 | aaabcacc$ | 14 |
14 | aabcacc$ | 14 |
14 | abcacc$ | 14 |
14 | bcacc$ | T1 (aaa) |
0 | bcacc$ | 2 |
2 | cacc$ | 6 |
6 | acc$ | T3 (bc) |
0 | acc$ | 14 |
14 | cc$ | T1 (a) |
0 | cc$ | 3 |
3 | c$ | T1 (c) |
0 | c$ | 3 |
3 | $ | T1 (c) |
The input string aaabcacc is, after 13 steps, split into three tokens: T1 (corresponding to lexeme aaa), T3 (bc), T1 (c), T1 (c).