Theoretical Aspects of Lexical Analysis/Exercise 16

From Wiki**3

< Theoretical Aspects of Lexical Analysis
Revision as of 19:13, 22 April 2010 by Root (talk | contribs) (New page: __NOTOC__ Compute the non-deterministic finite automaton (NFA) by using Thompson's algorithm. Compute the minimal deterministic finite automaton (DFA).<br/>The alphabet is Σ = { a, b, c }...)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Compute the non-deterministic finite automaton (NFA) by using Thompson's algorithm. Compute the minimal deterministic finite automaton (DFA).
The alphabet is Σ = { a, b, c }. Indicate the number of processing steps for the given input string.

  • G = { bc*, a*|c, a|b* }, input string = aaabcacc

NFA

The following is the result of applying Thompson's algorithm. State 5 recognizes the first expression (token T1); state 13 recognizes token T2; and state 21 recognizes token T3.

<graph> digraph nfa {

    { node [shape=circle style=invis] s }
 rankdir=LR; ratio=0.5
 node [shape=doublecircle,fixedsize=true,width=0.2,fontsize=10]; 5 13 21
 node [shape=circle,fixedsize=true,width=0.2,fontsize=10];
 s -> 0
 0 -> 1 
 1 -> 2 [label="b",fontsize=10]
 2 -> 3
 2 -> 5
 3 -> 4 [label="c",fontsize=10]
 4 -> 3
 4 -> 5
 0 -> 6 
 6 -> 7
 6 -> 11
 7 -> 8
 7 -> 10
 8 -> 9 [label="a",fontsize=10]
 9 -> 8
 9 -> 10
 11 -> 12 [label="c",fontsize=10]
 12 -> 13
 10 -> 13
 0 -> 14
 14 -> 15
 14 -> 17
 15 -> 16 [label="a",fontsize=10]
 17 -> 18
 17 -> 20
 18 -> 19 [label="b",fontsize=10]
 19 -> 18
 19 -> 20
 20 -> 21
 16 -> 21
 fontsize=10

} </graph>

DFA

Determination table for the above NFA:

In α∈Σ move(In, α) ε-closure(move(In, α)) In+1 = ε-closure(move(In, α))
- - 0 0, 1, 6, 7, 8, 10, 11, 13, 14, 15, 17, 18, 20, 21 0 (T2)
0 a 9, 16 8, 9, 10, 13, 16, 21 1 (T2)
0 b 2, 19 2, 3, 5, 18, 19, 20, 21 2 (T1)
0 c 12 12, 13 3 (T2)
1 a 9 8, 9, 10, 13 4 (T2)
1 b - - -
1 c - - -
2 a - - -
2 b 19 18, 19, 20, 21 5 (T3)
2 c 4 3, 4, 5 6 (T1)
3 a - - -
3 b - - -
3 c - - -
4 a 9 8, 9, 10, 13 4 (T2)
4 b - - -
4 c - - -
5 a - - -
5 b 19 18, 19, 20, 21 5 (T3)
5 c - - -
6 a - - -
6 b - - -
6 c 4 3, 4, 5 6 (T1)

Graphically, the DFA is represented as follows:

<graph> digraph dfa {

    { node [shape=circle style=invis] s }
 rankdir=LR; ratio=0.5
 node [shape=doublecircle,fixedsize=true,width=0.2,fontsize=10]; 0 1 2 3 4 5 6
 node [shape=circle,fixedsize=true,width=0.2,fontsize=10];
 s -> 0
 0 -> 1 [label="a",fontsize=10]
 0 -> 2 [label="b",fontsize=10]
 0 -> 3 [label="c",fontsize=10]
 1 -> 4 [label="a",fontsize=10]
 2 -> 5 [label="b",fontsize=10]
 2 -> 6 [label="c",fontsize=10]
 4 -> 4 [label="a",fontsize=10]
 5 -> 5 [label="b",fontsize=10]
 6 -> 6 [label="c",fontsize=10]
 fontsize=10

} </graph>

The minimization tree is as follows. Note that before considering transition behavior, states are split according to the token they recognize.

<graph> digraph mintree {

 node [shape=none,fixedsize=true,width=0.3,fontsize=10]
 "{0, 1, 2, 3, 4, 5, 6}" -> "{}       " [label="NF",fontsize=10]
 "{0, 1, 2, 3, 4, 5, 6}" -> "{0, 1, 2, 3, 4, 5, 6} " [label="  F",fontsize=10]
 "{0, 1, 2, 3, 4, 5, 6} " -> "{2, 6}" [label="  T1",fontsize=10]
 "{0, 1, 2, 3, 4, 5, 6} " -> "{0, 1, 3, 4}" [label="  T2",fontsize=10]
 "{0, 1, 2, 3, 4, 5, 6} " -> "{5}" [label="  T3",fontsize=10]
 "{0, 1, 3, 4}" -> "{0, 1, 4}" [label="  a",fontsize=10]
 "{0, 1, 3, 4}" -> "{3}" //[label="  a",fontsize=10]
 "{2, 6}" -> "{2}" [label="  b",fontsize=10]
 "{2, 6}" -> "{6}" //[label="  b",fontsize=10]
 "{0, 1, 4}" -> "{0}" [label="  b",fontsize=10]
 "{0, 1, 4}" -> "{1, 4}" //[label="  b",fontsize=10]
 "{1, 4}" -> "{1, 4} " [label="  a, b, c",fontsize=10]
 fontsize=10
 //label="Minimization tree"

} </graph>

Given the minimization tree, the final minimal DFA is as follows.

<graph> digraph dfa {

    { node [shape=circle style=invis] s }
 rankdir=LR; ratio=0.5
 node [shape=doublecircle,fixedsize=true,width=0.2,fontsize=10]; 0 14 2 3 5 6
 node [shape=circle,fixedsize=true,width=0.2,fontsize=10];
 s -> 0
 0 -> 14 [label="a",fontsize=10]
 0 -> 2 [label="b",fontsize=10]
 0 -> 3 [label="c",fontsize=10]
 14 -> 14 [label="a",fontsize=10]
 2 -> 5 [label="b",fontsize=10]
 2 -> 6 [label="c",fontsize=10]
 5 -> 5 [label="b",fontsize=10]
 6 -> 6 [label="c",fontsize=10]
 fontsize=10

} </graph>

Input Analysis

In Input In+1 / Token
0 aaabcacc$ 14
14 aabcacc$ 14
14 abcacc$ 14
14 bcacc$ T2 (aaa)
0 bcacc$ 2
2 cacc$ 6
6 acc$ T1 (bc)
0 acc$ 14
14 cc$ T2 (a)
0 cc$ 3
3 c$ T2 (c)
0 c$ 3
3 $ T2 (c)

The input string aaabcacc is, after 13 steps, split into five tokens: T2 (corresponding to lexeme aaa), T1 (bc), T2 (a), T2 (c), T2 (c).