Theoretical Aspects of Lexical Analysis/Exercise 18
From Wiki**3
< Theoretical Aspects of Lexical Analysis
Compute the non-deterministic finite automaton (NFA) by using Thompson's algorithm. Compute the minimal deterministic finite automaton (DFA).
The alphabet is Σ = { a, b, c }. Indicate the number of processing steps for the given input string.
- G = { ab*, (a|c)*, bc*}, input string = abbcac
NFA
The following is the result of applying Thompson's algorithm.
State 5 recognizes the first expression (token T1); state 13 recognizes token T2; and state 18 recognizes token T3.
<graph> digraph nfa {
{ node [shape=circle style=invis] s } rankdir=LR; ratio=0.5 node [shape=doublecircle,fixedsize=true,width=0.2,fontsize=10]; 5 13 18 node [shape=circle,fixedsize=true,width=0.2,fontsize=10];
s -> 0
0 -> 1 1 -> 2 [label="a",fontsize=10] 2 -> 3 2 -> 5 3 -> 4 [label="b",fontsize=10] 4 -> 3 4 -> 5
0 -> 6 6 -> 7 6 -> 13 7 -> 8 7 -> 10 8 -> 9 [label="a",fontsize=10] 9 -> 12 10 -> 11 [label="c",fontsize=10] 11 -> 12 12 -> 7 12 -> 13
0 -> 14 14 -> 15 [label="b",fontsize=10] 15 -> 16 15 -> 18 16 -> 17 [label="c",fontsize=10] 17 -> 16 17 -> 18 fontsize=10
} </graph>
DFA
Determination table for the above NFA:
In | α∈Σ | move(In, α) | ε-closure(move(In, α)) | In+1 = ε-closure(move(In, α)) |
---|---|---|---|---|
- | - | 0 | 0, 1, 6, 7, 8, 10, 13, 14 | 0 (T2) |
0 | a | 2, 9 | 2, 3, 5, 7, 8, 9, 10, 12, 13 | 1 (T1) |
0 | b | 15 | 15, 16, 18 | 2 (T3) |
0 | c | 11 | 7, 8, 10, 11, 12, 13 | 3 (T2) |
1 | a | 9 | 7, 8, 9, 10, 12, 13 | 4 (T2) |
1 | b | 4 | 3, 4, 5 | 5 (T1) |
1 | c | 11 | 7, 8, 10, 11, 12, 13 | 3 (T2) |
2 | a | - | - | - |
2 | b | - | - | - |
2 | c | 17 | 16, 17, 18 | 6 (T3) |
3 | a | 9 | 7, 8, 9, 10, 12, 13 | 4 (T2) |
3 | b | - | - | - |
3 | c | 11 | 7, 8, 10, 11, 12, 13 | 3 (T2) |
4 | a | 9 | 7, 8, 9, 10, 12, 13 | 4 (T2) |
4 | b | - | - | - |
4 | c | 11 | 7, 8, 10, 11, 12, 13 | 3 (T2) |
5 | a | - | - | - |
5 | b | 4 | 3, 4, 5 | 5 (T1) |
5 | c | - | - | - |
6 | - | - | - | - |
6 | b | - | - | - |
6 | c | 17 | 16, 17, 18 | 6 (T3) |
Graphically, the DFA is represented as follows: The minimization tree is as follows. Note that before considering transition behavior, states are split according to the token they recognize.