Theoretical Aspects of Lexical Analysis/Exercise 18
From Wiki**3
< Theoretical Aspects of Lexical Analysis
Compute the non-deterministic finite automaton (NFA) by using Thompson's algorithm. Compute the minimal deterministic finite automaton (DFA).
The alphabet is Σ = { a, b, c }. Indicate the number of processing steps for the given input string.
- G = { ab*, (a|c)*, bc*}, input string = abbcac
NFA
The following is the result of applying Thompson's algorithm.
State 5 recognizes the first expression (token T1); state 13 recognizes token T2; and state 18 recognizes token T3.
<graph> digraph nfa {
{ node [shape=circle style=invis] s } rankdir=LR; ratio=0.5 node [shape=doublecircle,fixedsize=true,width=0.2,fontsize=10]; 5 13 18 node [shape=circle,fixedsize=true,width=0.2,fontsize=10];
s -> 0
0 -> 1 1 -> 2 [label="a",fontsize=10] 2 -> 3 2 -> 5 3 -> 4 [label="b",fontsize=10] 4 -> 3 4 -> 5
0 -> 6 6 -> 7 6 -> 13 7 -> 8 7 -> 10 8 -> 9 [label="a",fontsize=10] 9 -> 12 10 -> 11 [label="c",fontsize=10] 11 -> 12 12 -> 7 12 -> 13
0 -> 14 14 -> 15 [label="b",fontsize=10] 15 -> 16 15 -> 18 16 -> 17 [label="c",fontsize=10] 17 -> 16 17 -> 18 fontsize=10
} </graph>
DFA
Determination table for the above NFA:
In | α∈Σ | move(In, α) | ε-closure(move(In, α)) | In+1 = ε-closure(move(In, α)) |
---|---|---|---|---|
- | - | 0 | 0, 1, 6, 7, 8, 10, 13, 14 | 0 (T2) |
0 | a | 2, 9 | 2, 3, 5, 7, 8, 9, 10, 12, 13 | 1 (T1) |
0 | b | 15 | 15, 16, 18 | 2 (T3) |
0 | c | 11 | 7, 8, 10, 11, 12, 13 | 3 (T2) |
1 | a | 9 | 7, 8, 9, 10, 12, 13 | 4 (T2) |
1 | b | 4 | 3, 4, 5 | 5 (T1) |
1 | c | 11 | 7, 8, 10, 11, 12, 13 | 3 (T2) |
2 | a | - | - | - |
2 | b | - | - | - |
2 | c | 17 | 16, 17, 18 | 6 (T3) |
3 | a | 9 | 7, 8, 9, 10, 12, 13 | 4 (T2) |
3 | b | - | - | - |
3 | c | 11 | 7, 8, 10, 11, 12, 13 | 3 (T2) |
4 | a | 9 | 7, 8, 9, 10, 12, 13 | 4 (T2) |
4 | b | - | - | - |
4 | c | 11 | 7, 8, 10, 11, 12, 13 | 3 (T2) |
5 | a | - | - | - |
5 | b | 4 | 3, 4, 5 | 5 (T1) |
5 | c | - | - | - |
6 | - | - | - | - |
6 | b | - | - | - |
6 | c | 17 | 16, 17, 18 | 6 (T3) |
Graphically, the DFA is represented as follows:
<graph> digraph dfa {
{ node [shape=circle style=invis] s } rankdir=LR; ratio=0.5 node [shape=doublecircle,fixedsize=true,width=0.2,fontsize=10]; 0 1 2 3 4 5 6 node [shape=circle,fixedsize=true,width=0.2,fontsize=10]; s -> 0
0 -> 1 [label="a",fontsize=10] 0 -> 2 [label="b",fontsize=10] 0 -> 3 [label="c",fontsize=10]
1 -> 4 [label="a",fontsize=10] 1 -> 5 [label="b",fontsize=10] 1 -> 3 [label="c",fontsize=10]
2 -> 6 [label="c",fontsize=10]
3 -> 4 [label="a",fontsize=10] 3 -> 3 [label="c",fontsize=10]
4 -> 4 [label="a",fontsize=10] 4 -> 3 [label="c",fontsize=10]
5 -> 5 [label="b",fontsize=10]
6 -> 6 [label="c",fontsize=10]
fontsize=10
} </graph>
The minimization tree is as follows. Note that before considering transition behavior, states are split according to the token they recognize.
<graph> digraph mintree {
node [shape=none,fixedsize=true,width=0.3,fontsize=10] "{0, 1, 2, 3, 4, 5, 6}" -> "{} " [label="NF",fontsize=10] "{0, 1, 2, 3, 4, 5, 6}" -> "{0, 1, 2, 3, 4, 5, 6} " [label=" F",fontsize=10] "{0, 1, 2, 3, 4, 5, 6} " -> "{1, 5}" [label=" T1",fontsize=10] "{0, 1, 2, 3, 4, 5, 6} " -> "{0, 3, 4}" [label=" T2",fontsize=10] "{0, 1, 2, 3, 4, 5, 6} " -> "{2, 6}" [label=" T3",fontsize=10] "{1, 5}" -> "{1}" //[label=" a",fontsize=10] "{1, 5}" -> "{5}" [label=" a",fontsize=10] "{0, 3, 4}" -> "{0}" //[label=" a",fontsize=10] "{0, 3, 4}" -> "{3, 4}" [label=" a",fontsize=10] "{3, 4}" -> "{3, 4} " [label=" a,b,c",fontsize=10] "{2, 6}" -> "{2, 6} " [label=" a,b,c",fontsize=10] fontsize=10 //label="Minimization tree"
} </graph>
Given the minimization tree, the final minimal DFA is as follows. Note that states 2 and 4 cannot be the same since they recognize different tokens.
<graph> digraph mindfa {
{ node [shape=circle style=invis] s } rankdir=LR; ratio=0.5 node [shape=doublecircle,fixedsize=true,width=0.2,fontsize=10]; 0 1 26 34 5 node [shape=circle,fixedsize=true,width=0.2,fontsize=10]; s -> 0 0 -> 1 [label="a",fontsize=10] 0 -> 26 [label="b",fontsize=10] 0 -> 34 [label="c",fontsize=10] 1 -> 34 [label="a,c",fontsize=10] 1 -> 5 [label="b",fontsize=10] 26 -> 26 [label="c",fontsize=10] 34 -> 34 [label="a,c",fontsize=10] 5 -> 5 [label="b",fontsize=10] fontsize=10
} </graph>
Input Analysis
In | Input | In+1 / Token |
---|---|---|
0 | abbcac$ | 1 |
1 | bbcac$ | 5 |
5 | bcac$ | 5 |
5 | cac$ | T1 (abb) |
0 | cac$ | 34 |
34 | ac$ | 34 |
34 | c$ | 34 |
34 | $ | T2 (cac) |
The input string abbcac is, after 8 steps, split into two tokens: T1 (corresponding to lexeme abb), and T2 (cac).