Theoretical Aspects of Lexical Analysis/Exercise 10
From Wiki**3
< Theoretical Aspects of Lexical Analysis
Compute the non-deterministic finite automaton (NFA) by using Thompson's algorithm. Compute the minimal deterministic finite automaton (DFA).
The alphabet is Σ = { a, b }. Indicate the number of processing steps for the given input string.
- G = { a*|b, ba*, b* }, input string = aababb
NFA
The following is the result of applying Thompson's algorithm. State 8 recognizes the first expression (token T1); state 13 recognizes token T2; and state 17 recognizes token T3.
<graph> digraph nfa {
{ node [shape=circle style=invis] s } rankdir=LR; ratio=0.5 node [shape=doublecircle,fixedsize=true,width=0.2,fontsize=10]; 8 13 17 node [shape=circle,fixedsize=true,width=0.2,fontsize=10];
s -> 0
0 -> 1 1 -> 2 1 -> 6 2 -> 3 2 -> 5 3 -> 4 [label="a",fontsize=10] 4 -> 3 4 -> 5 5 -> 8 6 -> 7 [label="b",fontsize=10] 7 -> 8
0 -> 9 9 -> 10 [label="b",fontsize=10] 10 -> 11 10 -> 13 11 -> 12 [label="a",fontsize=10] 12 -> 11 12 -> 13
0 -> 14 14 -> 15 14 -> 17 15 -> 16 [label="b",fontsize=10] 16 -> 15 16 -> 17 fontsize=10
} </graph>
DFA
Determination table for the above NFA:
In | α∈Σ | move(In, α) | ε-closure(move(In, α)) | In+1 = ε-closure(move(In, α)) |
---|---|---|---|---|
- | - | 0 | 0, 1, 2, 3, 5, 6, 8, 9, 14, 15, 17 | 0 (T1) |
0 | a | 4 | 3, 4, 5, 8 | 1 (T1) |
0 | b | 7, 10, 16 | 7, 8, 10, 11, 13, 15, 16, 17 | 2 (T1) |
1 | a | 4 | 3, 4, 5, 8 | 1 (T1) |
1 | b | - | - | - |
2 | a | 12 | 11, 12, 13 | 3 (T2) |
2 | b | 16 | 15, 16, 17 | 4 (T3) |
3 | a | 12 | 11, 12, 13 | 3 (T2) |
3 | b | - | - | - |
4 | a | - | - | - |
4 | b | 16 | 15, 16, 17 | 4 (T3) |
Graphically, the DFA is represented as follows:
<graph> digraph dfa {
{ node [shape=circle style=invis] s } rankdir=LR; ratio=0.5 node [shape=doublecircle,fixedsize=true,width=0.2,fontsize=10]; 0 1 2 3 4 node [shape=circle,fixedsize=true,width=0.2,fontsize=10]; s -> 0 0 -> 1 [label="a",fontsize=10] 0 -> 2 [label="b",fontsize=10] 1 -> 1 [label="a",fontsize=10] 2 -> 3 [label="a",fontsize=10] 2 -> 4 [label="b",fontsize=10] 3 -> 3 [label="a",fontsize=10] 4 -> 4 [label="b",fontsize=10] fontsize=10
} </graph>
The minimization tree is as follows. Note that before considering transition behavior, states are split according to the token they recognize.
<graph> digraph mintree {
node [shape=none,fixedsize=true,width=0.3,fontsize=10] "{0, 1, 2, 3, 4}" -> "{}" [label="NF",fontsize=10] "{0, 1, 2, 3, 4}" -> "{0, 1, 2, 3, 4} " [label=" F",fontsize=10] "{0, 1, 2, 3, 4} " -> "{0, 1, 2}" [label=" T1",fontsize=10] "{0, 1, 2, 3, 4} " -> "{3}" [label=" T2",fontsize=10] "{0, 1, 2, 3, 4} " -> "{4}" [label=" T3",fontsize=10] "{0, 1, 2}" -> "{0, 1}" //[label=" a",fontsize=10] "{0, 1, 2}" -> "{2}" [label=" a",fontsize=10] "{0, 1}" -> "{0}" "{0, 1}" -> "{1}" [label=" b",fontsize=10] fontsize=10 //label="Minimization tree"
} </graph>
The tree expansion for non-splitting sets has been omitted for simplicity ("a" transitions for super-state {0, 1}).
Given the minimization tree, the DFA is already minimal.
Input Analysis
In | Input | In+1 / Token |
---|---|---|
0 | aababb$ | 1 |
1 | ababb$ | 1 |
1 | babb$ | T1 (aa) |
0 | babb$ | 2 |
2 | abb$ | 3 |
3 | bb$ | T2 (ba) |
0 | bb$ | 2 |
2 | b$ | 4 |
4 | $ | T3 (bb) |
The input string aababb is, after 9 steps, split into three tokens: T1 (corresponding to lexeme aa), T2 (ba), and T3 (bb).